{"title":"无平方 n 的 [nc] 形式的素数","authors":"S. I. Dimitrov","doi":"10.1007/s11253-024-02318-7","DOIUrl":null,"url":null,"abstract":"<p>Let [·] be the floor function. We show that if 1 <<i> c </i>< <span>\\(\\frac{3849}{3334}\\)</span><i>,</i> then there exist infinitely many prime numbers of the form [<i>n</i><sup><i>c</i></sup>]<i>,</i> where <i>n</i> is square free.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"51 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primes of the form [nc] with Square-Free n\",\"authors\":\"S. I. Dimitrov\",\"doi\":\"10.1007/s11253-024-02318-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let [·] be the floor function. We show that if 1 <<i> c </i>< <span>\\\\(\\\\frac{3849}{3334}\\\\)</span><i>,</i> then there exist infinitely many prime numbers of the form [<i>n</i><sup><i>c</i></sup>]<i>,</i> where <i>n</i> is square free.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02318-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02318-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 [-] 成为底函数。我们证明,如果 1 < c < (\frac{3849}{3334}\),那么存在无穷多个形式为 [nc] 的素数,其中 n 是无平方数。
Let [·] be the floor function. We show that if 1 < c < \(\frac{3849}{3334}\), then there exist infinitely many prime numbers of the form [nc], where n is square free.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.