{"title":"用傅里叶-贝塞尔和对空间 L2[(0, 1); x] 中的函数类的平均值进行逼近并估算其 n 宽值","authors":"Sergii Vakarchuk, Mykhailo Vakarchuk","doi":"10.1007/s11253-024-02317-8","DOIUrl":null,"url":null,"abstract":"<p>In the space <i>L</i><sub>2</sub>[(0, 1); <i>x</i>], by using a system of functions <span>\\({\\left\\{{\\widehat{J}}_{v}\\left({\\mu }_{k,v}x\\right)\\right\\}}_{k\\in {\\mathbb{N}}}, v\\ge 0,\\)</span> orthonormal with weight <i>x</i> and formed by a Bessel function of the first kind of index <i>v</i> and its positive roots, we construct generalized finite differences of the <i>m</i>th order <span>\\({\\Delta }_{\\gamma \\left(h\\right)}^{m}\\left(f\\right),\\)</span> <i>m</i> ∈ ℕ, <i>h</i> ∈ (0, 1), and the generalized characteristics of smoothness <span>\\({\\Phi }_{\\gamma \\left(h\\right)}^{\\left(\\gamma \\right)}\\left(f,t\\right)=\\left(1/t\\right)\\underset{0}{\\overset{t}{\\int }}\\Vert {\\Delta }_{\\gamma \\left(\\tau \\right)}^{m}\\left(f\\right)\\Vert d\\tau .\\)</span> For the classes <span>\\({\\mathcal{W}}_{2}^{r,v}{\\Phi }_{m}^{\\left(\\gamma \\right)},\\left(\\uppsi \\right)\\)</span> defined by using the differential operator <span>\\({D}_{v}^{r},\\)</span> the function <span>\\({\\Phi }_{m}^{\\left(\\gamma \\right)}\\left(f\\right),\\)</span> and the majorant ψ, we establish lower and upper estimates for the values of a series of <i>n</i>-widths. We established the condition for ψ, which enables us to compute the exact values of <i>n</i>-widths. To illustrate our exact results, we present several specific examples. We also consider the problems of absolute and uniform convergence of Fourier–Bessel series on the interval (0, 1)<i>.</i></p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"20 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation in the Mean for the Classes Of Functions in the Space L2[(0, 1); x] by The Fourier–Bessel Sums And Estimation of the Values of Their n-Widths\",\"authors\":\"Sergii Vakarchuk, Mykhailo Vakarchuk\",\"doi\":\"10.1007/s11253-024-02317-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the space <i>L</i><sub>2</sub>[(0, 1); <i>x</i>], by using a system of functions <span>\\\\({\\\\left\\\\{{\\\\widehat{J}}_{v}\\\\left({\\\\mu }_{k,v}x\\\\right)\\\\right\\\\}}_{k\\\\in {\\\\mathbb{N}}}, v\\\\ge 0,\\\\)</span> orthonormal with weight <i>x</i> and formed by a Bessel function of the first kind of index <i>v</i> and its positive roots, we construct generalized finite differences of the <i>m</i>th order <span>\\\\({\\\\Delta }_{\\\\gamma \\\\left(h\\\\right)}^{m}\\\\left(f\\\\right),\\\\)</span> <i>m</i> ∈ ℕ, <i>h</i> ∈ (0, 1), and the generalized characteristics of smoothness <span>\\\\({\\\\Phi }_{\\\\gamma \\\\left(h\\\\right)}^{\\\\left(\\\\gamma \\\\right)}\\\\left(f,t\\\\right)=\\\\left(1/t\\\\right)\\\\underset{0}{\\\\overset{t}{\\\\int }}\\\\Vert {\\\\Delta }_{\\\\gamma \\\\left(\\\\tau \\\\right)}^{m}\\\\left(f\\\\right)\\\\Vert d\\\\tau .\\\\)</span> For the classes <span>\\\\({\\\\mathcal{W}}_{2}^{r,v}{\\\\Phi }_{m}^{\\\\left(\\\\gamma \\\\right)},\\\\left(\\\\uppsi \\\\right)\\\\)</span> defined by using the differential operator <span>\\\\({D}_{v}^{r},\\\\)</span> the function <span>\\\\({\\\\Phi }_{m}^{\\\\left(\\\\gamma \\\\right)}\\\\left(f\\\\right),\\\\)</span> and the majorant ψ, we establish lower and upper estimates for the values of a series of <i>n</i>-widths. We established the condition for ψ, which enables us to compute the exact values of <i>n</i>-widths. To illustrate our exact results, we present several specific examples. We also consider the problems of absolute and uniform convergence of Fourier–Bessel series on the interval (0, 1)<i>.</i></p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02317-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02317-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在空间 L2[(0, 1);x]中,通过使用函数系统({\left\{\widehat{J}}_{v}\left({\mu }_{k,v}x\right)\right\}}_{k\in {\mathbb{N}}}, v\ge 0、\)与权重 x 正交,并由索引 v 的第一类贝塞尔函数及其正根形成,我们构造 m 阶广义有限差分 ({\Delta }_{gamma \left(h\right)}^{m}\left(f\right)、\m∈ ℕ, h∈ (0, 1),以及平滑性的广义特征 ({\Phi }_{gamma \left(h\right)}^{m}\left(f、t\right)=left(1/t\right)underset{0}{overset{t}{int }}\Vert {\Delta }_{\gamma \left(\tau \right)}^{m}\left(f\right)\Vert d\tau .\)对于类 \({\mathcal{W}}_{2}^{r,v}{Phi }_{m}^{left(\gamma \right)},\left(\uppsi \right)\) 使用微分算子 \({D}_{v}^{r}、\函数 \({\Phi }_{m}^{left(\gamma \right)}left(f\right),\) 和大数 ψ,我们建立了一系列 n 宽值的下限和上限估计。我们建立了 ψ 的条件,这使我们能够计算 n 宽的精确值。为了说明我们的精确结果,我们举了几个具体的例子。我们还考虑了区间 (0, 1) 上傅里叶-贝塞尔级数的绝对收敛和均匀收敛问题。
Approximation in the Mean for the Classes Of Functions in the Space L2[(0, 1); x] by The Fourier–Bessel Sums And Estimation of the Values of Their n-Widths
In the space L2[(0, 1); x], by using a system of functions \({\left\{{\widehat{J}}_{v}\left({\mu }_{k,v}x\right)\right\}}_{k\in {\mathbb{N}}}, v\ge 0,\) orthonormal with weight x and formed by a Bessel function of the first kind of index v and its positive roots, we construct generalized finite differences of the mth order \({\Delta }_{\gamma \left(h\right)}^{m}\left(f\right),\)m ∈ ℕ, h ∈ (0, 1), and the generalized characteristics of smoothness \({\Phi }_{\gamma \left(h\right)}^{\left(\gamma \right)}\left(f,t\right)=\left(1/t\right)\underset{0}{\overset{t}{\int }}\Vert {\Delta }_{\gamma \left(\tau \right)}^{m}\left(f\right)\Vert d\tau .\) For the classes \({\mathcal{W}}_{2}^{r,v}{\Phi }_{m}^{\left(\gamma \right)},\left(\uppsi \right)\) defined by using the differential operator \({D}_{v}^{r},\) the function \({\Phi }_{m}^{\left(\gamma \right)}\left(f\right),\) and the majorant ψ, we establish lower and upper estimates for the values of a series of n-widths. We established the condition for ψ, which enables us to compute the exact values of n-widths. To illustrate our exact results, we present several specific examples. We also consider the problems of absolute and uniform convergence of Fourier–Bessel series on the interval (0, 1).
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.