通过瑞尔丹数组计算莱昂纳多和超莱昂纳多数

IF 0.5 4区 数学 Q3 MATHEMATICS
Yasemin Alp, E. Gokcen Kocer
{"title":"通过瑞尔丹数组计算莱昂纳多和超莱昂纳多数","authors":"Yasemin Alp, E. Gokcen Kocer","doi":"10.1007/s11253-024-02325-8","DOIUrl":null,"url":null,"abstract":"<p>A generalization of the Leonardo numbers is defined and called hyper-Leonardo numbers. Infinite lowertriangular matrices whose elements are Leonardo and hyper-Leonardo numbers are considered. Then the <i>A</i>- and <i>Z</i>-sequences of these matrices are obtained. Finally, the combinatorial identities between the hyper-Leonardo and Fibonacci numbers are deduced by using the fundamental theorem on Riordan arrays.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"117 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leonardo and Hyper-Leonardo Numbers Via Riordan Arrays\",\"authors\":\"Yasemin Alp, E. Gokcen Kocer\",\"doi\":\"10.1007/s11253-024-02325-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A generalization of the Leonardo numbers is defined and called hyper-Leonardo numbers. Infinite lowertriangular matrices whose elements are Leonardo and hyper-Leonardo numbers are considered. Then the <i>A</i>- and <i>Z</i>-sequences of these matrices are obtained. Finally, the combinatorial identities between the hyper-Leonardo and Fibonacci numbers are deduced by using the fundamental theorem on Riordan arrays.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02325-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02325-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

莱昂纳多数的广义定义被称为超莱昂纳多数。我们考虑了元素为莱昂纳多数和超莱昂纳多数的无穷低三角矩阵。然后得到这些矩阵的 A 序列和 Z 序列。最后,利用瑞尔丹数组基本定理推导出超莱昂纳多数和斐波那契数之间的组合同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leonardo and Hyper-Leonardo Numbers Via Riordan Arrays

A generalization of the Leonardo numbers is defined and called hyper-Leonardo numbers. Infinite lowertriangular matrices whose elements are Leonardo and hyper-Leonardo numbers are considered. Then the A- and Z-sequences of these matrices are obtained. Finally, the combinatorial identities between the hyper-Leonardo and Fibonacci numbers are deduced by using the fundamental theorem on Riordan arrays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信