逗号范畴上的阿贝尔模型结构

Pub Date : 2024-09-06 DOI:10.1007/s11253-024-02328-5
Guoliang Tang
{"title":"逗号范畴上的阿贝尔模型结构","authors":"Guoliang Tang","doi":"10.1007/s11253-024-02328-5","DOIUrl":null,"url":null,"abstract":"<p>Let A and B be bicomplete Abelian categories, which both have enough projectives and injectives and let <i>T</i> : A → B be a right exact functor. Under certain mild conditions, we show that hereditary Abelian model structures on A and B can be amalgamated into a global hereditary Abelian model structure on the comma category (<i>T</i> ↓ B)<i>.</i> As an application of this result, we give an explicit description of a subcategory that consists of all trivial objects of the Gorenstein flat model structure on the category of modules over a triangular matrix ring.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abelian Model Structures on Comma Categories\",\"authors\":\"Guoliang Tang\",\"doi\":\"10.1007/s11253-024-02328-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let A and B be bicomplete Abelian categories, which both have enough projectives and injectives and let <i>T</i> : A → B be a right exact functor. Under certain mild conditions, we show that hereditary Abelian model structures on A and B can be amalgamated into a global hereditary Abelian model structure on the comma category (<i>T</i> ↓ B)<i>.</i> As an application of this result, we give an explicit description of a subcategory that consists of all trivial objects of the Gorenstein flat model structure on the category of modules over a triangular matrix ring.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02328-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02328-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 A 和 B 是双完备阿贝尔范畴,它们都有足够多的投射子和注入子,并设 T : A → B 是一个右精确函子。在某些温和的条件下,我们证明 A 和 B 上的遗传阿贝尔模型结构可以合并成逗号范畴(T ↓ B)上的全局遗传阿贝尔模型结构。作为对这一结果的应用,我们给出了一个子类的明确描述,该子类由三角矩阵环上模块范畴的戈伦斯坦平面模型结构的所有微不足道的对象组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Abelian Model Structures on Comma Categories

Let A and B be bicomplete Abelian categories, which both have enough projectives and injectives and let T : A → B be a right exact functor. Under certain mild conditions, we show that hereditary Abelian model structures on A and B can be amalgamated into a global hereditary Abelian model structure on the comma category (T ↓ B). As an application of this result, we give an explicit description of a subcategory that consists of all trivial objects of the Gorenstein flat model structure on the category of modules over a triangular matrix ring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信