波雅诺夫-奈德诺夫问题与科尔莫戈罗夫式不等式之间的关系

IF 0.5 4区 数学 Q3 MATHEMATICS
Volodymyr Kofanov
{"title":"波雅诺夫-奈德诺夫问题与科尔莫戈罗夫式不等式之间的关系","authors":"Volodymyr Kofanov","doi":"10.1007/s11253-024-02330-x","DOIUrl":null,"url":null,"abstract":"<p>It is shown that the Bojanov–Naidenov problem <span>\\({\\Vert {x}^{\\left(k\\right)}\\Vert }_{q, \\delta }\\)</span> → sup<i>, k</i> = 0<i>,</i> 1<i>, . . . , r −</i> 1<i>,</i> on the classes of functions <span>\\({\\Omega }_{p}^{r}\\left({A}_{0}, {A}_{r}\\right)\\)</span> := <span>\\(\\left\\{x \\in {L}_{\\infty }^{r}: {\\Vert {x}^{\\left(r\\right)}\\Vert }_{\\infty }\\le {A}_{r}, L{\\left(x\\right)}_{p}\\le {A}_{0}\\right\\},\\)</span> where <i>q ≥</i> 1 for <i>k ≥</i> 1 and <i>q ≥ p</i> for <i>k</i> = 0<i>,</i> is equivalent to the problem of finding the sharp constant <i>C</i> = <i>C</i>(<i>λ</i>) in the Kolmogorov-type inequality</p><p><span>\\({\\Vert {x}^{\\left(r\\right)}\\Vert }_{q,\\delta }\\le CL{\\left(x\\right)}_{p}^{\\alpha }{\\Vert {x}^{\\left(r\\right)}\\Vert }_{\\infty }^{1-\\alpha }, x\\in {\\Omega }_{p,\\lambda }^{r}, (1)\\)</span></p><p>where <span>\\(\\alpha =\\frac{r-k+1/q}{r+1/p},\\)</span> <span>\\({\\Vert x\\Vert }_{p,\\delta }\\)</span> := sup {<span>\\({\\Vert x\\Vert }_{{L}_{p}[a,b]}\\)</span>:a, b, ∈ <b>R</b>, 0 &lt; b – a ≤ δ} δ &gt; 0, <span>\\({\\Omega }_{p,\\lambda }^{r}\\)</span> := <span>\\(\\bigcup \\left\\{{\\Omega }_{p}^{r}\\left({A}_{0}, {A}_{r}\\right):{A}_{0}={A}_{r}L\\left(\\varphi \\lambda ,r\\right)p\\right\\},\\)</span> ⋋ &gt; 0, φ⋋,r is a contraction of the ideal Euler spline of order r, and L<sub>(x)p</sub> : = sup {<span>\\({\\Vert x\\Vert }_{{L}_{p}[a,b]}:\\)</span> a, b, ∈ <b>R</b> |x(t)| &gt; 0, t ∈ (a,b)}. In particular, we obtain a sharp inequality of the form (1) in the classes <span>\\({\\Omega }_{p,\\lambda }^{r},\\)</span> ⋋ &gt; 0. We also prove the theorems on relationships for the Bojanov–Naidenov problems in the spaces of trigonometric polynomials and splines and establish the corresponding sharp Bernstein-type inequalities.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"106 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship Between the Bojanov–Naidenov Problem and the Kolmogorov-Type Inequalities\",\"authors\":\"Volodymyr Kofanov\",\"doi\":\"10.1007/s11253-024-02330-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is shown that the Bojanov–Naidenov problem <span>\\\\({\\\\Vert {x}^{\\\\left(k\\\\right)}\\\\Vert }_{q, \\\\delta }\\\\)</span> → sup<i>, k</i> = 0<i>,</i> 1<i>, . . . , r −</i> 1<i>,</i> on the classes of functions <span>\\\\({\\\\Omega }_{p}^{r}\\\\left({A}_{0}, {A}_{r}\\\\right)\\\\)</span> := <span>\\\\(\\\\left\\\\{x \\\\in {L}_{\\\\infty }^{r}: {\\\\Vert {x}^{\\\\left(r\\\\right)}\\\\Vert }_{\\\\infty }\\\\le {A}_{r}, L{\\\\left(x\\\\right)}_{p}\\\\le {A}_{0}\\\\right\\\\},\\\\)</span> where <i>q ≥</i> 1 for <i>k ≥</i> 1 and <i>q ≥ p</i> for <i>k</i> = 0<i>,</i> is equivalent to the problem of finding the sharp constant <i>C</i> = <i>C</i>(<i>λ</i>) in the Kolmogorov-type inequality</p><p><span>\\\\({\\\\Vert {x}^{\\\\left(r\\\\right)}\\\\Vert }_{q,\\\\delta }\\\\le CL{\\\\left(x\\\\right)}_{p}^{\\\\alpha }{\\\\Vert {x}^{\\\\left(r\\\\right)}\\\\Vert }_{\\\\infty }^{1-\\\\alpha }, x\\\\in {\\\\Omega }_{p,\\\\lambda }^{r}, (1)\\\\)</span></p><p>where <span>\\\\(\\\\alpha =\\\\frac{r-k+1/q}{r+1/p},\\\\)</span> <span>\\\\({\\\\Vert x\\\\Vert }_{p,\\\\delta }\\\\)</span> := sup {<span>\\\\({\\\\Vert x\\\\Vert }_{{L}_{p}[a,b]}\\\\)</span>:a, b, ∈ <b>R</b>, 0 &lt; b – a ≤ δ} δ &gt; 0, <span>\\\\({\\\\Omega }_{p,\\\\lambda }^{r}\\\\)</span> := <span>\\\\(\\\\bigcup \\\\left\\\\{{\\\\Omega }_{p}^{r}\\\\left({A}_{0}, {A}_{r}\\\\right):{A}_{0}={A}_{r}L\\\\left(\\\\varphi \\\\lambda ,r\\\\right)p\\\\right\\\\},\\\\)</span> ⋋ &gt; 0, φ⋋,r is a contraction of the ideal Euler spline of order r, and L<sub>(x)p</sub> : = sup {<span>\\\\({\\\\Vert x\\\\Vert }_{{L}_{p}[a,b]}:\\\\)</span> a, b, ∈ <b>R</b> |x(t)| &gt; 0, t ∈ (a,b)}. In particular, we obtain a sharp inequality of the form (1) in the classes <span>\\\\({\\\\Omega }_{p,\\\\lambda }^{r},\\\\)</span> ⋋ &gt; 0. We also prove the theorems on relationships for the Bojanov–Naidenov problems in the spaces of trigonometric polynomials and splines and establish the corresponding sharp Bernstein-type inequalities.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02330-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02330-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究表明,Bojanov-Naidenov 问题 ({\Vert {x}^{left(k\right)}\Vert }_{q, \delta }\)→ sup, k = 0, 1, ., r - 1, on the classes of functions \({\Omega }_{p}^{r}\left({A}_{0}, {A}_{r}\right)\) := \(\left\{x \in {L}_{infty }^{r}:{\Vert {x}^{left(r\right)}\Vert }_{infty }\le {A}_{r}, L{left(x\right)}_{p}\le {A}_{0}\right\},\) 其中 k ≥ 1 时 q ≥ 1,k = 0 时 q ≥ p、等价于在科尔莫哥洛夫型不等式中找到尖锐常数 C = C(λ) 的问题({\Vert {x}^{\left(r\right)}\Vert }_{q、\cxin {Omega }_{p,/lambda }^{r}, (1)\)where \(α =frac{r-k+1/q}{r+1/p},\) \({\Vert x\Vert }_{p,/delta }) := sup {({\Vert x\Vert }_{L}_{p}[a,b]}\):a, b, ∈ R, 0 < b - a ≤ δ} δ > 0,\({\Omega }_{p,\lambda }^{r}\) := ({{Omega }_{p}^{r}\left({A}_{0}, {A}_{r}\right):{A}_{0}={A}_{r}L\left(\varphi\lambda ,r\right)p\right},\)φ⋋ > 0, φ⋋,r 是阶数为 r 的理想欧拉样条线的收缩,并且 L(x)p : = sup {({\Vert x\Vert }_{L}_{p}[a,b]}:\) a, b,∈ R |x(t)| > 0, t∈ (a,b)}.我们还证明了三角多项式和花键空间中波扬诺夫-奈德诺夫问题的关系定理,并建立了相应的伯恩斯坦型尖锐不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relationship Between the Bojanov–Naidenov Problem and the Kolmogorov-Type Inequalities

It is shown that the Bojanov–Naidenov problem \({\Vert {x}^{\left(k\right)}\Vert }_{q, \delta }\) → sup, k = 0, 1, . . . , r − 1, on the classes of functions \({\Omega }_{p}^{r}\left({A}_{0}, {A}_{r}\right)\) := \(\left\{x \in {L}_{\infty }^{r}: {\Vert {x}^{\left(r\right)}\Vert }_{\infty }\le {A}_{r}, L{\left(x\right)}_{p}\le {A}_{0}\right\},\) where q ≥ 1 for k ≥ 1 and q ≥ p for k = 0, is equivalent to the problem of finding the sharp constant C = C(λ) in the Kolmogorov-type inequality

\({\Vert {x}^{\left(r\right)}\Vert }_{q,\delta }\le CL{\left(x\right)}_{p}^{\alpha }{\Vert {x}^{\left(r\right)}\Vert }_{\infty }^{1-\alpha }, x\in {\Omega }_{p,\lambda }^{r}, (1)\)

where \(\alpha =\frac{r-k+1/q}{r+1/p},\) \({\Vert x\Vert }_{p,\delta }\) := sup {\({\Vert x\Vert }_{{L}_{p}[a,b]}\):a, b, ∈ R, 0 < b – a ≤ δ} δ > 0, \({\Omega }_{p,\lambda }^{r}\) := \(\bigcup \left\{{\Omega }_{p}^{r}\left({A}_{0}, {A}_{r}\right):{A}_{0}={A}_{r}L\left(\varphi \lambda ,r\right)p\right\},\) ⋋ > 0, φ⋋,r is a contraction of the ideal Euler spline of order r, and L(x)p : = sup {\({\Vert x\Vert }_{{L}_{p}[a,b]}:\) a, b, ∈ R |x(t)| > 0, t ∈ (a,b)}. In particular, we obtain a sharp inequality of the form (1) in the classes \({\Omega }_{p,\lambda }^{r},\) ⋋ > 0. We also prove the theorems on relationships for the Bojanov–Naidenov problems in the spaces of trigonometric polynomials and splines and establish the corresponding sharp Bernstein-type inequalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信