{"title":"波雅诺夫-奈德诺夫问题与科尔莫戈罗夫式不等式之间的关系","authors":"Volodymyr Kofanov","doi":"10.1007/s11253-024-02330-x","DOIUrl":null,"url":null,"abstract":"<p>It is shown that the Bojanov–Naidenov problem <span>\\({\\Vert {x}^{\\left(k\\right)}\\Vert }_{q, \\delta }\\)</span> → sup<i>, k</i> = 0<i>,</i> 1<i>, . . . , r −</i> 1<i>,</i> on the classes of functions <span>\\({\\Omega }_{p}^{r}\\left({A}_{0}, {A}_{r}\\right)\\)</span> := <span>\\(\\left\\{x \\in {L}_{\\infty }^{r}: {\\Vert {x}^{\\left(r\\right)}\\Vert }_{\\infty }\\le {A}_{r}, L{\\left(x\\right)}_{p}\\le {A}_{0}\\right\\},\\)</span> where <i>q ≥</i> 1 for <i>k ≥</i> 1 and <i>q ≥ p</i> for <i>k</i> = 0<i>,</i> is equivalent to the problem of finding the sharp constant <i>C</i> = <i>C</i>(<i>λ</i>) in the Kolmogorov-type inequality</p><p><span>\\({\\Vert {x}^{\\left(r\\right)}\\Vert }_{q,\\delta }\\le CL{\\left(x\\right)}_{p}^{\\alpha }{\\Vert {x}^{\\left(r\\right)}\\Vert }_{\\infty }^{1-\\alpha }, x\\in {\\Omega }_{p,\\lambda }^{r}, (1)\\)</span></p><p>where <span>\\(\\alpha =\\frac{r-k+1/q}{r+1/p},\\)</span> <span>\\({\\Vert x\\Vert }_{p,\\delta }\\)</span> := sup {<span>\\({\\Vert x\\Vert }_{{L}_{p}[a,b]}\\)</span>:a, b, ∈ <b>R</b>, 0 < b – a ≤ δ} δ > 0, <span>\\({\\Omega }_{p,\\lambda }^{r}\\)</span> := <span>\\(\\bigcup \\left\\{{\\Omega }_{p}^{r}\\left({A}_{0}, {A}_{r}\\right):{A}_{0}={A}_{r}L\\left(\\varphi \\lambda ,r\\right)p\\right\\},\\)</span> ⋋ > 0, φ⋋,r is a contraction of the ideal Euler spline of order r, and L<sub>(x)p</sub> : = sup {<span>\\({\\Vert x\\Vert }_{{L}_{p}[a,b]}:\\)</span> a, b, ∈ <b>R</b> |x(t)| > 0, t ∈ (a,b)}. In particular, we obtain a sharp inequality of the form (1) in the classes <span>\\({\\Omega }_{p,\\lambda }^{r},\\)</span> ⋋ > 0. We also prove the theorems on relationships for the Bojanov–Naidenov problems in the spaces of trigonometric polynomials and splines and establish the corresponding sharp Bernstein-type inequalities.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"106 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship Between the Bojanov–Naidenov Problem and the Kolmogorov-Type Inequalities\",\"authors\":\"Volodymyr Kofanov\",\"doi\":\"10.1007/s11253-024-02330-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is shown that the Bojanov–Naidenov problem <span>\\\\({\\\\Vert {x}^{\\\\left(k\\\\right)}\\\\Vert }_{q, \\\\delta }\\\\)</span> → sup<i>, k</i> = 0<i>,</i> 1<i>, . . . , r −</i> 1<i>,</i> on the classes of functions <span>\\\\({\\\\Omega }_{p}^{r}\\\\left({A}_{0}, {A}_{r}\\\\right)\\\\)</span> := <span>\\\\(\\\\left\\\\{x \\\\in {L}_{\\\\infty }^{r}: {\\\\Vert {x}^{\\\\left(r\\\\right)}\\\\Vert }_{\\\\infty }\\\\le {A}_{r}, L{\\\\left(x\\\\right)}_{p}\\\\le {A}_{0}\\\\right\\\\},\\\\)</span> where <i>q ≥</i> 1 for <i>k ≥</i> 1 and <i>q ≥ p</i> for <i>k</i> = 0<i>,</i> is equivalent to the problem of finding the sharp constant <i>C</i> = <i>C</i>(<i>λ</i>) in the Kolmogorov-type inequality</p><p><span>\\\\({\\\\Vert {x}^{\\\\left(r\\\\right)}\\\\Vert }_{q,\\\\delta }\\\\le CL{\\\\left(x\\\\right)}_{p}^{\\\\alpha }{\\\\Vert {x}^{\\\\left(r\\\\right)}\\\\Vert }_{\\\\infty }^{1-\\\\alpha }, x\\\\in {\\\\Omega }_{p,\\\\lambda }^{r}, (1)\\\\)</span></p><p>where <span>\\\\(\\\\alpha =\\\\frac{r-k+1/q}{r+1/p},\\\\)</span> <span>\\\\({\\\\Vert x\\\\Vert }_{p,\\\\delta }\\\\)</span> := sup {<span>\\\\({\\\\Vert x\\\\Vert }_{{L}_{p}[a,b]}\\\\)</span>:a, b, ∈ <b>R</b>, 0 < b – a ≤ δ} δ > 0, <span>\\\\({\\\\Omega }_{p,\\\\lambda }^{r}\\\\)</span> := <span>\\\\(\\\\bigcup \\\\left\\\\{{\\\\Omega }_{p}^{r}\\\\left({A}_{0}, {A}_{r}\\\\right):{A}_{0}={A}_{r}L\\\\left(\\\\varphi \\\\lambda ,r\\\\right)p\\\\right\\\\},\\\\)</span> ⋋ > 0, φ⋋,r is a contraction of the ideal Euler spline of order r, and L<sub>(x)p</sub> : = sup {<span>\\\\({\\\\Vert x\\\\Vert }_{{L}_{p}[a,b]}:\\\\)</span> a, b, ∈ <b>R</b> |x(t)| > 0, t ∈ (a,b)}. In particular, we obtain a sharp inequality of the form (1) in the classes <span>\\\\({\\\\Omega }_{p,\\\\lambda }^{r},\\\\)</span> ⋋ > 0. We also prove the theorems on relationships for the Bojanov–Naidenov problems in the spaces of trigonometric polynomials and splines and establish the corresponding sharp Bernstein-type inequalities.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02330-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02330-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
研究表明,Bojanov-Naidenov 问题 ({\Vert {x}^{left(k\right)}\Vert }_{q, \delta }\)→ sup, k = 0, 1, ., r - 1, on the classes of functions \({\Omega }_{p}^{r}\left({A}_{0}, {A}_{r}\right)\) := \(\left\{x \in {L}_{infty }^{r}:{\Vert {x}^{left(r\right)}\Vert }_{infty }\le {A}_{r}, L{left(x\right)}_{p}\le {A}_{0}\right\},\) 其中 k ≥ 1 时 q ≥ 1,k = 0 时 q ≥ p、等价于在科尔莫哥洛夫型不等式中找到尖锐常数 C = C(λ) 的问题({\Vert {x}^{\left(r\right)}\Vert }_{q、\cxin {Omega }_{p,/lambda }^{r}, (1)\)where \(α =frac{r-k+1/q}{r+1/p},\) \({\Vert x\Vert }_{p,/delta }) := sup {({\Vert x\Vert }_{L}_{p}[a,b]}\):a, b, ∈ R, 0 < b - a ≤ δ} δ > 0,\({\Omega }_{p,\lambda }^{r}\) := ({{Omega }_{p}^{r}\left({A}_{0}, {A}_{r}\right):{A}_{0}={A}_{r}L\left(\varphi\lambda ,r\right)p\right},\)φ⋋ > 0, φ⋋,r 是阶数为 r 的理想欧拉样条线的收缩,并且 L(x)p : = sup {({\Vert x\Vert }_{L}_{p}[a,b]}:\) a, b,∈ R |x(t)| > 0, t∈ (a,b)}.我们还证明了三角多项式和花键空间中波扬诺夫-奈德诺夫问题的关系定理,并建立了相应的伯恩斯坦型尖锐不等式。
Relationship Between the Bojanov–Naidenov Problem and the Kolmogorov-Type Inequalities
It is shown that the Bojanov–Naidenov problem \({\Vert {x}^{\left(k\right)}\Vert }_{q, \delta }\) → sup, k = 0, 1, . . . , r − 1, on the classes of functions \({\Omega }_{p}^{r}\left({A}_{0}, {A}_{r}\right)\) := \(\left\{x \in {L}_{\infty }^{r}: {\Vert {x}^{\left(r\right)}\Vert }_{\infty }\le {A}_{r}, L{\left(x\right)}_{p}\le {A}_{0}\right\},\) where q ≥ 1 for k ≥ 1 and q ≥ p for k = 0, is equivalent to the problem of finding the sharp constant C = C(λ) in the Kolmogorov-type inequality
where \(\alpha =\frac{r-k+1/q}{r+1/p},\)\({\Vert x\Vert }_{p,\delta }\) := sup {\({\Vert x\Vert }_{{L}_{p}[a,b]}\):a, b, ∈ R, 0 < b – a ≤ δ} δ > 0, \({\Omega }_{p,\lambda }^{r}\) := \(\bigcup \left\{{\Omega }_{p}^{r}\left({A}_{0}, {A}_{r}\right):{A}_{0}={A}_{r}L\left(\varphi \lambda ,r\right)p\right\},\) ⋋ > 0, φ⋋,r is a contraction of the ideal Euler spline of order r, and L(x)p : = sup {\({\Vert x\Vert }_{{L}_{p}[a,b]}:\) a, b, ∈ R |x(t)| > 0, t ∈ (a,b)}. In particular, we obtain a sharp inequality of the form (1) in the classes \({\Omega }_{p,\lambda }^{r},\) ⋋ > 0. We also prove the theorems on relationships for the Bojanov–Naidenov problems in the spaces of trigonometric polynomials and splines and establish the corresponding sharp Bernstein-type inequalities.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.