{"title":"$$\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)$$ 的规范集","authors":"Sung Guen Kim","doi":"10.1007/s11253-024-02329-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>n</i> ∈ ℕ, <i>n</i> ≥ 2<i>.</i> An element (<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>) ∈ <i>E</i><sub><i>n</i></sub> is called a <i>norming point</i> of <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{n}E\\right)\\)</span> if ||<i>x</i><sub>1</sub>|| = <i>…</i> = ||<i>x</i><sub><i>n</i></sub>|| = 1 and <i>|T</i>(<i>x</i><sub>1</sub>,<i>…</i>,<i>x</i><sub><i>n</i></sub>)<i>|</i> = ||<i>T</i>||, where ℒ(<sup><i>n</i></sup><i>E</i>) denotes the space of all continuous <i>n</i>-linear forms on <i>E.</i> For <i>T</i> ∈ ℒ (<sup><i>n</i></sup><i>E</i>), we define\n</p><span>$$\\text{Norm}\\left(T\\right)=\\left\\{\\left({x}_{1},\\dots ,{x}_{n}\\right)\\in {E}^{n}:\\left({x}_{1},\\dots ,{x}_{n}\\right)\\text{ is a norming point of }T\\right\\}.$$</span><p>The set Norm(<i>T</i>) is called the <i>norming set</i> of <i>T.</i> For <i>m</i> ∈ ℕ<i>, m</i> ≥ 2, we characterize Norm(<i>T</i>) for any <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)\\)</span>, where <span>\\({l}_{1}^{n}={\\mathbb{R}}^{n}\\)</span> with the <i>l</i><sub>1</sub>-norm. As applications, we classify Norm(<i>T</i>) for every <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)\\)</span> with <i>n</i> = 2, 3 and <i>m</i> = 2<i>.</i></p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"12 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Norming Sets of $$\\\\mathcal{L}\\\\left({}^{m}{l}_{1}^{n}\\\\right)$$\",\"authors\":\"Sung Guen Kim\",\"doi\":\"10.1007/s11253-024-02329-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>n</i> ∈ ℕ, <i>n</i> ≥ 2<i>.</i> An element (<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>) ∈ <i>E</i><sub><i>n</i></sub> is called a <i>norming point</i> of <i>T</i> ∈ <span>\\\\(\\\\mathcal{L}\\\\left({}^{n}E\\\\right)\\\\)</span> if ||<i>x</i><sub>1</sub>|| = <i>…</i> = ||<i>x</i><sub><i>n</i></sub>|| = 1 and <i>|T</i>(<i>x</i><sub>1</sub>,<i>…</i>,<i>x</i><sub><i>n</i></sub>)<i>|</i> = ||<i>T</i>||, where ℒ(<sup><i>n</i></sup><i>E</i>) denotes the space of all continuous <i>n</i>-linear forms on <i>E.</i> For <i>T</i> ∈ ℒ (<sup><i>n</i></sup><i>E</i>), we define\\n</p><span>$$\\\\text{Norm}\\\\left(T\\\\right)=\\\\left\\\\{\\\\left({x}_{1},\\\\dots ,{x}_{n}\\\\right)\\\\in {E}^{n}:\\\\left({x}_{1},\\\\dots ,{x}_{n}\\\\right)\\\\text{ is a norming point of }T\\\\right\\\\}.$$</span><p>The set Norm(<i>T</i>) is called the <i>norming set</i> of <i>T.</i> For <i>m</i> ∈ ℕ<i>, m</i> ≥ 2, we characterize Norm(<i>T</i>) for any <i>T</i> ∈ <span>\\\\(\\\\mathcal{L}\\\\left({}^{m}{l}_{1}^{n}\\\\right)\\\\)</span>, where <span>\\\\({l}_{1}^{n}={\\\\mathbb{R}}^{n}\\\\)</span> with the <i>l</i><sub>1</sub>-norm. As applications, we classify Norm(<i>T</i>) for every <i>T</i> ∈ <span>\\\\(\\\\mathcal{L}\\\\left({}^{m}{l}_{1}^{n}\\\\right)\\\\)</span> with <i>n</i> = 2, 3 and <i>m</i> = 2<i>.</i></p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02329-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02329-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 n∈ ℕ, n ≥ 2。如果||x1|| = ... = ||xn|| = 1 且||T(x1,...,xn)| = ||T||,则元素 (x1,....,xn) ∈ En 称为 T∈ \(\mathcal{L}\left({}^{n}E\right)\) 的一个规范点,其中ℒ(nE) 表示 E 上所有连续 n 线性形式的空间。对于 T∈ ℒ (nE), 我们定义$$text{Norm}\left(T\right)=\left\left({x}_{1},\dots ,{x}_{n}\right)\in {E}^{n}:\left({x}_{1},\dots ,{x}_{n}\right)\text{ 是 }T\right} 的规范点。对于 m ∈ℕ,m ≥ 2,我们用 l1-norm 来描述任意 T ∈\(\mathcal{L}left({}^{m}{l}_{1}^{n}\right)\) 的 Norm(T) 的特征,其中 \({l}_{1}^{n}={/mathbb{R}}}^{n}/)。作为应用,我们为 n = 2, 3 和 m = 2 的每个 T∈ (\mathcal{L}left({}^{m}{l}_{1}^{n}\right))分类 Norm(T)。
The Norming Sets of $$\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)$$
Let n ∈ ℕ, n ≥ 2. An element (x1,…,xn) ∈ En is called a norming point of T ∈ \(\mathcal{L}\left({}^{n}E\right)\) if ||x1|| = … = ||xn|| = 1 and |T(x1,…,xn)| = ||T||, where ℒ(nE) denotes the space of all continuous n-linear forms on E. For T ∈ ℒ (nE), we define
$$\text{Norm}\left(T\right)=\left\{\left({x}_{1},\dots ,{x}_{n}\right)\in {E}^{n}:\left({x}_{1},\dots ,{x}_{n}\right)\text{ is a norming point of }T\right\}.$$
The set Norm(T) is called the norming set of T. For m ∈ ℕ, m ≥ 2, we characterize Norm(T) for any T ∈ \(\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)\), where \({l}_{1}^{n}={\mathbb{R}}^{n}\) with the l1-norm. As applications, we classify Norm(T) for every T ∈ \(\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)\) with n = 2, 3 and m = 2.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.