{"title":"张量网络状态的自动结构搜索,包括纠缠重正化","authors":"Ryo Watanabe, Hiroshi Ueda","doi":"10.1103/physrevresearch.6.033259","DOIUrl":null,"url":null,"abstract":"Tensor network (TN) states, including entanglement renormalization (ER), can encompass a wider variety of entangled states. When the entanglement structure of the quantum state of interest is nonuniform in real space, accurately representing the state with a limited number of degrees of freedom hinges on appropriately configuring the TN to align with the entanglement pattern. However, a proposal has yet to show a structural search of ER due to its high computational cost and the lack of flexibility in its algorithm. In this study, we conducted an optimal structural search of TN, including ER, based on the reconstruction of their local structures with respect to variational energy. First, we demonstrated that our algorithm for the spin-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math> tetramer singlets model could calculate exact ground energy using the multiscale entanglement renormalization ansatz (MERA) structure as an initial TN structure. Subsequently, we applied our algorithm to the random XY models with the two initial structures: MERA and the suitable structure underlying the strong disordered renormalization group. We found that, in both cases, our algorithm achieves improvements in variational energy, fidelity, and entanglement entropy. The degree of improvement in these quantities is superior in the latter case compared to the former, suggesting that utilizing an existing TN design method as a preprocessing step is important for maximizing our algorithm's performance.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic structural search of tensor network states including entanglement renormalization\",\"authors\":\"Ryo Watanabe, Hiroshi Ueda\",\"doi\":\"10.1103/physrevresearch.6.033259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensor network (TN) states, including entanglement renormalization (ER), can encompass a wider variety of entangled states. When the entanglement structure of the quantum state of interest is nonuniform in real space, accurately representing the state with a limited number of degrees of freedom hinges on appropriately configuring the TN to align with the entanglement pattern. However, a proposal has yet to show a structural search of ER due to its high computational cost and the lack of flexibility in its algorithm. In this study, we conducted an optimal structural search of TN, including ER, based on the reconstruction of their local structures with respect to variational energy. First, we demonstrated that our algorithm for the spin-<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math> tetramer singlets model could calculate exact ground energy using the multiscale entanglement renormalization ansatz (MERA) structure as an initial TN structure. Subsequently, we applied our algorithm to the random XY models with the two initial structures: MERA and the suitable structure underlying the strong disordered renormalization group. We found that, in both cases, our algorithm achieves improvements in variational energy, fidelity, and entanglement entropy. The degree of improvement in these quantities is superior in the latter case compared to the former, suggesting that utilizing an existing TN design method as a preprocessing step is important for maximizing our algorithm's performance.\",\"PeriodicalId\":20546,\"journal\":{\"name\":\"Physical Review Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.6.033259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic structural search of tensor network states including entanglement renormalization
Tensor network (TN) states, including entanglement renormalization (ER), can encompass a wider variety of entangled states. When the entanglement structure of the quantum state of interest is nonuniform in real space, accurately representing the state with a limited number of degrees of freedom hinges on appropriately configuring the TN to align with the entanglement pattern. However, a proposal has yet to show a structural search of ER due to its high computational cost and the lack of flexibility in its algorithm. In this study, we conducted an optimal structural search of TN, including ER, based on the reconstruction of their local structures with respect to variational energy. First, we demonstrated that our algorithm for the spin- tetramer singlets model could calculate exact ground energy using the multiscale entanglement renormalization ansatz (MERA) structure as an initial TN structure. Subsequently, we applied our algorithm to the random XY models with the two initial structures: MERA and the suitable structure underlying the strong disordered renormalization group. We found that, in both cases, our algorithm achieves improvements in variational energy, fidelity, and entanglement entropy. The degree of improvement in these quantities is superior in the latter case compared to the former, suggesting that utilizing an existing TN design method as a preprocessing step is important for maximizing our algorithm's performance.