{"title":"生态生命:面向可持续计算的碳感知无服务器功能调度","authors":"Yankai Jiang, Rohan Basu Roy, Baolin Li, Devesh Tiwari","doi":"arxiv-2409.02085","DOIUrl":null,"url":null,"abstract":"This work introduces ECOLIFE, the first carbon-aware serverless function\nscheduler to co-optimize carbon footprint and performance. ECOLIFE builds on\nthe key insight of intelligently exploiting multi-generation hardware to\nachieve high performance and lower carbon footprint. ECOLIFE designs multiple\nnovel extensions to Particle Swarm Optimization (PSO) in the context of\nserverless execution environment to achieve high performance while effectively\nreducing the carbon footprint.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EcoLife: Carbon-Aware Serverless Function Scheduling for Sustainable Computing\",\"authors\":\"Yankai Jiang, Rohan Basu Roy, Baolin Li, Devesh Tiwari\",\"doi\":\"arxiv-2409.02085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces ECOLIFE, the first carbon-aware serverless function\\nscheduler to co-optimize carbon footprint and performance. ECOLIFE builds on\\nthe key insight of intelligently exploiting multi-generation hardware to\\nachieve high performance and lower carbon footprint. ECOLIFE designs multiple\\nnovel extensions to Particle Swarm Optimization (PSO) in the context of\\nserverless execution environment to achieve high performance while effectively\\nreducing the carbon footprint.\",\"PeriodicalId\":501422,\"journal\":{\"name\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EcoLife: Carbon-Aware Serverless Function Scheduling for Sustainable Computing
This work introduces ECOLIFE, the first carbon-aware serverless function
scheduler to co-optimize carbon footprint and performance. ECOLIFE builds on
the key insight of intelligently exploiting multi-generation hardware to
achieve high performance and lower carbon footprint. ECOLIFE designs multiple
novel extensions to Particle Swarm Optimization (PSO) in the context of
serverless execution environment to achieve high performance while effectively
reducing the carbon footprint.