生态生命:面向可持续计算的碳感知无服务器功能调度

Yankai Jiang, Rohan Basu Roy, Baolin Li, Devesh Tiwari
{"title":"生态生命:面向可持续计算的碳感知无服务器功能调度","authors":"Yankai Jiang, Rohan Basu Roy, Baolin Li, Devesh Tiwari","doi":"arxiv-2409.02085","DOIUrl":null,"url":null,"abstract":"This work introduces ECOLIFE, the first carbon-aware serverless function\nscheduler to co-optimize carbon footprint and performance. ECOLIFE builds on\nthe key insight of intelligently exploiting multi-generation hardware to\nachieve high performance and lower carbon footprint. ECOLIFE designs multiple\nnovel extensions to Particle Swarm Optimization (PSO) in the context of\nserverless execution environment to achieve high performance while effectively\nreducing the carbon footprint.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EcoLife: Carbon-Aware Serverless Function Scheduling for Sustainable Computing\",\"authors\":\"Yankai Jiang, Rohan Basu Roy, Baolin Li, Devesh Tiwari\",\"doi\":\"arxiv-2409.02085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces ECOLIFE, the first carbon-aware serverless function\\nscheduler to co-optimize carbon footprint and performance. ECOLIFE builds on\\nthe key insight of intelligently exploiting multi-generation hardware to\\nachieve high performance and lower carbon footprint. ECOLIFE designs multiple\\nnovel extensions to Particle Swarm Optimization (PSO) in the context of\\nserverless execution environment to achieve high performance while effectively\\nreducing the carbon footprint.\",\"PeriodicalId\":501422,\"journal\":{\"name\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作介绍了 ECOLIFE,它是首个可共同优化碳足迹和性能的无碳感知服务器函数调度程序。ECOLIFE 基于智能利用多代硬件实现高性能和低碳足迹的关键见解。ECOLIFE 设计了无服务器执行环境下粒子群优化(PSO)的多层次扩展,以在实现高性能的同时有效减少碳足迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EcoLife: Carbon-Aware Serverless Function Scheduling for Sustainable Computing
This work introduces ECOLIFE, the first carbon-aware serverless function scheduler to co-optimize carbon footprint and performance. ECOLIFE builds on the key insight of intelligently exploiting multi-generation hardware to achieve high performance and lower carbon footprint. ECOLIFE designs multiple novel extensions to Particle Swarm Optimization (PSO) in the context of serverless execution environment to achieve high performance while effectively reducing the carbon footprint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信