{"title":"通过主成分分析实现模型正交化和贝叶斯预测混合","authors":"P. Giuliani, K. Godbey, V. Kejzlar, W. Nazarewicz","doi":"10.1103/physrevresearch.6.033266","DOIUrl":null,"url":null,"abstract":"One can improve predictability in the unknown domain by combining forecasts of imperfect complex computational models using a Bayesian statistical machine learning framework. In many cases, however, the models used in the mixing process are similar. In addition to contaminating the model space, the existence of such similar, or even redundant, models during the multimodeling process can result in misinterpretation of results and deterioration of predictive performance. In this paper we describe a method based on the principal component analysis that eliminates model redundancy. We show that by adding model orthogonalization to the proposed Bayesian model combination framework, one can arrive at better prediction accuracy and reach excellent uncertainty quantification performance.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":"248 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model orthogonalization and Bayesian forecast mixing via principal component analysis\",\"authors\":\"P. Giuliani, K. Godbey, V. Kejzlar, W. Nazarewicz\",\"doi\":\"10.1103/physrevresearch.6.033266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One can improve predictability in the unknown domain by combining forecasts of imperfect complex computational models using a Bayesian statistical machine learning framework. In many cases, however, the models used in the mixing process are similar. In addition to contaminating the model space, the existence of such similar, or even redundant, models during the multimodeling process can result in misinterpretation of results and deterioration of predictive performance. In this paper we describe a method based on the principal component analysis that eliminates model redundancy. We show that by adding model orthogonalization to the proposed Bayesian model combination framework, one can arrive at better prediction accuracy and reach excellent uncertainty quantification performance.\",\"PeriodicalId\":20546,\"journal\":{\"name\":\"Physical Review Research\",\"volume\":\"248 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.6.033266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model orthogonalization and Bayesian forecast mixing via principal component analysis
One can improve predictability in the unknown domain by combining forecasts of imperfect complex computational models using a Bayesian statistical machine learning framework. In many cases, however, the models used in the mixing process are similar. In addition to contaminating the model space, the existence of such similar, or even redundant, models during the multimodeling process can result in misinterpretation of results and deterioration of predictive performance. In this paper we describe a method based on the principal component analysis that eliminates model redundancy. We show that by adding model orthogonalization to the proposed Bayesian model combination framework, one can arrive at better prediction accuracy and reach excellent uncertainty quantification performance.