R. Rossi, F. Šimkovic IV, M. Ferrero, A. Georges, A. M. Tsvelik, N. V. Prokof'ev, I. S. Tupitsyn
{"title":"自旋费米子和费米赫伯德模型中的相互作用增强嵌套","authors":"R. Rossi, F. Šimkovic IV, M. Ferrero, A. Georges, A. M. Tsvelik, N. V. Prokof'ev, I. S. Tupitsyn","doi":"10.1103/physrevresearch.6.l032058","DOIUrl":null,"url":null,"abstract":"The spin-fermion (SF) model postulates that the dominant coupling between low-energy fermions in near critical metals is mediated by collective spin fluctuations (paramagnons) peaked at the Néel wave vector, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"bold\">Q</mi><mi>N</mi></msub></math>, connecting hot spots on opposite sides of the Fermi surface. It has been argued that strong correlations at hot spots lead to a Fermi surface deformation (FSD) featuring flat regions and increased nesting. This conjecture was confirmed in the perturbative self-consistent calculations when the paramagnon propagator dependence on momentum deviation from <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"bold\">Q</mi><mi>N</mi></msub></math> is given by <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mi>χ</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>∝</mo><mrow><mo>|</mo><mi mathvariant=\"normal\">Δ</mi><mi>q</mi><mo>|</mo></mrow></mrow></math>. Using diagrammatic Monte Carlo (diagMC) technique we show that such a dependence holds only at temperatures orders of magnitude smaller than any other energy scale in the problem, indicating that a different mechanism may be at play. Instead, we find that a <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mi>χ</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>∝</mo><msup><mrow><mo>|</mo><mi mathvariant=\"normal\">Δ</mi><mi>q</mi><mo>|</mo></mrow><mn>2</mn></msup></mrow></math> dependence yields a robust finite-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> scenario for achieving FSD. To link phenomenological and microscopic descriptions, we applied the connected determinant diagMC method to the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><mi>t</mi><mo>−</mo><msup><mi>t</mi><mo>′</mo></msup><mo>)</mo></mrow></math> Hubbard model and found that at large <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>U</mi><mo>/</mo><mi>t</mi><mo>></mo><mn>5.5</mn></mrow></math> before the formation of electron and hole pockets (i) the FSD defined as a maximum of the spectral function is not very pronounced; instead, it is the lines of zeros of the renormalized dispersion relation that deforms toward nesting, and (ii) the static spin susceptibility is well described by <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mi>χ</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>∝</mo><msup><mrow><mo>|</mo><mi mathvariant=\"normal\">Δ</mi><mi>q</mi><mo>|</mo></mrow><mn>2</mn></msup></mrow></math>. Flat FS regions yield a nontrivial scenario for realizing a non-Fermi liquid state.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction-enhanced nesting in spin-fermion and Fermi-Hubbard models\",\"authors\":\"R. Rossi, F. Šimkovic IV, M. Ferrero, A. Georges, A. M. Tsvelik, N. V. Prokof'ev, I. S. Tupitsyn\",\"doi\":\"10.1103/physrevresearch.6.l032058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spin-fermion (SF) model postulates that the dominant coupling between low-energy fermions in near critical metals is mediated by collective spin fluctuations (paramagnons) peaked at the Néel wave vector, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"bold\\\">Q</mi><mi>N</mi></msub></math>, connecting hot spots on opposite sides of the Fermi surface. It has been argued that strong correlations at hot spots lead to a Fermi surface deformation (FSD) featuring flat regions and increased nesting. This conjecture was confirmed in the perturbative self-consistent calculations when the paramagnon propagator dependence on momentum deviation from <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"bold\\\">Q</mi><mi>N</mi></msub></math> is given by <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msup><mi>χ</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>∝</mo><mrow><mo>|</mo><mi mathvariant=\\\"normal\\\">Δ</mi><mi>q</mi><mo>|</mo></mrow></mrow></math>. Using diagrammatic Monte Carlo (diagMC) technique we show that such a dependence holds only at temperatures orders of magnitude smaller than any other energy scale in the problem, indicating that a different mechanism may be at play. Instead, we find that a <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msup><mi>χ</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>∝</mo><msup><mrow><mo>|</mo><mi mathvariant=\\\"normal\\\">Δ</mi><mi>q</mi><mo>|</mo></mrow><mn>2</mn></msup></mrow></math> dependence yields a robust finite-<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi></math> scenario for achieving FSD. To link phenomenological and microscopic descriptions, we applied the connected determinant diagMC method to the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>(</mo><mi>t</mi><mo>−</mo><msup><mi>t</mi><mo>′</mo></msup><mo>)</mo></mrow></math> Hubbard model and found that at large <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>U</mi><mo>/</mo><mi>t</mi><mo>></mo><mn>5.5</mn></mrow></math> before the formation of electron and hole pockets (i) the FSD defined as a maximum of the spectral function is not very pronounced; instead, it is the lines of zeros of the renormalized dispersion relation that deforms toward nesting, and (ii) the static spin susceptibility is well described by <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msup><mi>χ</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>∝</mo><msup><mrow><mo>|</mo><mi mathvariant=\\\"normal\\\">Δ</mi><mi>q</mi><mo>|</mo></mrow><mn>2</mn></msup></mrow></math>. Flat FS regions yield a nontrivial scenario for realizing a non-Fermi liquid state.\",\"PeriodicalId\":20546,\"journal\":{\"name\":\"Physical Review Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.6.l032058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.l032058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interaction-enhanced nesting in spin-fermion and Fermi-Hubbard models
The spin-fermion (SF) model postulates that the dominant coupling between low-energy fermions in near critical metals is mediated by collective spin fluctuations (paramagnons) peaked at the Néel wave vector, , connecting hot spots on opposite sides of the Fermi surface. It has been argued that strong correlations at hot spots lead to a Fermi surface deformation (FSD) featuring flat regions and increased nesting. This conjecture was confirmed in the perturbative self-consistent calculations when the paramagnon propagator dependence on momentum deviation from is given by . Using diagrammatic Monte Carlo (diagMC) technique we show that such a dependence holds only at temperatures orders of magnitude smaller than any other energy scale in the problem, indicating that a different mechanism may be at play. Instead, we find that a dependence yields a robust finite- scenario for achieving FSD. To link phenomenological and microscopic descriptions, we applied the connected determinant diagMC method to the Hubbard model and found that at large before the formation of electron and hole pockets (i) the FSD defined as a maximum of the spectral function is not very pronounced; instead, it is the lines of zeros of the renormalized dispersion relation that deforms toward nesting, and (ii) the static spin susceptibility is well described by . Flat FS regions yield a nontrivial scenario for realizing a non-Fermi liquid state.