静电掺杂对金属和二维材料边缘接触电阻的影响

Madhuchhanda Brahma, Maarten L. Van de Put, Edward Chen, Massimo V. Fischetti, William G. Vandenberghe
{"title":"静电掺杂对金属和二维材料边缘接触电阻的影响","authors":"Madhuchhanda Brahma, Maarten L. Van de Put, Edward Chen, Massimo V. Fischetti, William G. Vandenberghe","doi":"10.1103/physrevresearch.6.033278","DOIUrl":null,"url":null,"abstract":"In this theoretical study, we compare electrostatically doped metal-transition metal dichalcogenide (TMD) edge-contacts versus substitutionally doped edge-contacts in terms of their contact resistance. Our approach involves the utilization of electrostatic doping achieved by applying back-gate bias to the metal-TMD edge contacts, where carrier injection is primarily governed by the Schottky barrier at the interface. To analyze these contacts, we employ the Wentzel-Kramers-Brillouin (WKB) approximation to calculate the transmission coefficient and use density functional theory (DFT)-derived band structures. We numerically solve the Poisson equation to capture the electrostatic potential. We also account for the impact of the image force using Green's function for the Poisson equation with boundary conditions appropriate to our specific geometry. Our findings reveal that electrostatically doped TMD edge contacts exhibit higher contact resistance compared to impurity-doped edge contacts at equivalent carrier concentrations. At the same time, we find that, among the electrostatically doped edge contacts, a low-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>κ</mi></math> back-gate oxide in conjunction with low-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>κ</mi></math> top oxide is preferable in terms of improvement in contact resistance. For instance, in a metal-TMD edge contact scenario involving a monolayer <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>MoS</mi><mn>2</mn></msub></math> as the channel, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>SiO</mi><mn>2</mn></msub></math> as the infinitely thick top oxide, and a <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>SiO</mi><mn>2</mn></msub></math> back-gate oxide with an equivalent oxide thickness (EOT) of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><mspace width=\"0.28em\"></mspace><mi>nm</mi></mrow></math>, we demonstrate that it is possible to achieve an impressively low contact resistance of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>50</mn><mspace width=\"0.28em\"></mspace><mrow><mi mathvariant=\"normal\">Ω</mi><mspace width=\"0.28em\"></mspace><mi>µ</mi><mi mathvariant=\"normal\">m</mi></mrow></mrow></math> when the back-gate bias exceeds or equals 2 V.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of electrostatic doping on the resistance of metal and two-dimensional materials edge contacts\",\"authors\":\"Madhuchhanda Brahma, Maarten L. Van de Put, Edward Chen, Massimo V. Fischetti, William G. Vandenberghe\",\"doi\":\"10.1103/physrevresearch.6.033278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this theoretical study, we compare electrostatically doped metal-transition metal dichalcogenide (TMD) edge-contacts versus substitutionally doped edge-contacts in terms of their contact resistance. Our approach involves the utilization of electrostatic doping achieved by applying back-gate bias to the metal-TMD edge contacts, where carrier injection is primarily governed by the Schottky barrier at the interface. To analyze these contacts, we employ the Wentzel-Kramers-Brillouin (WKB) approximation to calculate the transmission coefficient and use density functional theory (DFT)-derived band structures. We numerically solve the Poisson equation to capture the electrostatic potential. We also account for the impact of the image force using Green's function for the Poisson equation with boundary conditions appropriate to our specific geometry. Our findings reveal that electrostatically doped TMD edge contacts exhibit higher contact resistance compared to impurity-doped edge contacts at equivalent carrier concentrations. At the same time, we find that, among the electrostatically doped edge contacts, a low-<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>κ</mi></math> back-gate oxide in conjunction with low-<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>κ</mi></math> top oxide is preferable in terms of improvement in contact resistance. For instance, in a metal-TMD edge contact scenario involving a monolayer <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>MoS</mi><mn>2</mn></msub></math> as the channel, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>SiO</mi><mn>2</mn></msub></math> as the infinitely thick top oxide, and a <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>SiO</mi><mn>2</mn></msub></math> back-gate oxide with an equivalent oxide thickness (EOT) of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>1</mn><mspace width=\\\"0.28em\\\"></mspace><mi>nm</mi></mrow></math>, we demonstrate that it is possible to achieve an impressively low contact resistance of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>50</mn><mspace width=\\\"0.28em\\\"></mspace><mrow><mi mathvariant=\\\"normal\\\">Ω</mi><mspace width=\\\"0.28em\\\"></mspace><mi>µ</mi><mi mathvariant=\\\"normal\\\">m</mi></mrow></mrow></math> when the back-gate bias exceeds or equals 2 V.\",\"PeriodicalId\":20546,\"journal\":{\"name\":\"Physical Review Research\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.6.033278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项理论研究中,我们比较了静电掺杂金属-过渡金属二卤化物(TMD)边缘接触与替代掺杂边缘接触的接触电阻。我们的方法是利用静电掺杂,通过向金属-TMD 边缘接触施加后栅偏压来实现,载流子注入主要受界面上肖特基势垒的控制。为了分析这些接触,我们采用 Wentzel-Kramers-Brillouin (WKB) 近似计算传输系数,并使用密度泛函理论 (DFT) 导出的带结构。我们通过数值求解泊松方程来捕捉静电势。我们还使用格林函数来计算图像力的影响,该函数用于泊松方程,边界条件适合我们特定的几何形状。我们的研究结果表明,在载流子浓度相当的情况下,静电掺杂的 TMD 边缘触点比杂质掺杂的边缘触点表现出更高的接触电阻。同时,我们还发现,在静电掺杂的边缘触点中,低κ后栅氧化物与低κ顶氧化物的结合更有利于改善接触电阻。例如,在以单层 MoS2 作为沟道、SiO2 作为无限厚的顶层氧化物、SiO2 作为等效氧化物厚度 (EOT) 为 1nm 的后栅氧化物的金属-TMD 边缘接触方案中,我们证明了当后栅偏压超过或等于 2 V 时,可以实现 50Ωµm 的超低接触电阻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Role of electrostatic doping on the resistance of metal and two-dimensional materials edge contacts

Role of electrostatic doping on the resistance of metal and two-dimensional materials edge contacts
In this theoretical study, we compare electrostatically doped metal-transition metal dichalcogenide (TMD) edge-contacts versus substitutionally doped edge-contacts in terms of their contact resistance. Our approach involves the utilization of electrostatic doping achieved by applying back-gate bias to the metal-TMD edge contacts, where carrier injection is primarily governed by the Schottky barrier at the interface. To analyze these contacts, we employ the Wentzel-Kramers-Brillouin (WKB) approximation to calculate the transmission coefficient and use density functional theory (DFT)-derived band structures. We numerically solve the Poisson equation to capture the electrostatic potential. We also account for the impact of the image force using Green's function for the Poisson equation with boundary conditions appropriate to our specific geometry. Our findings reveal that electrostatically doped TMD edge contacts exhibit higher contact resistance compared to impurity-doped edge contacts at equivalent carrier concentrations. At the same time, we find that, among the electrostatically doped edge contacts, a low-κ back-gate oxide in conjunction with low-κ top oxide is preferable in terms of improvement in contact resistance. For instance, in a metal-TMD edge contact scenario involving a monolayer MoS2 as the channel, SiO2 as the infinitely thick top oxide, and a SiO2 back-gate oxide with an equivalent oxide thickness (EOT) of 1nm, we demonstrate that it is possible to achieve an impressively low contact resistance of 50Ωµm when the back-gate bias exceeds or equals 2 V.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信