HERL:利用强化学习进行分层联合学习与自适应同态加密

Jiaxang Tang, Zeshan Fayyaz, Mohammad A. Salahuddin, Raouf Boutaba, Zhi-Li Zhang, Ali Anwar
{"title":"HERL:利用强化学习进行分层联合学习与自适应同态加密","authors":"Jiaxang Tang, Zeshan Fayyaz, Mohammad A. Salahuddin, Raouf Boutaba, Zhi-Li Zhang, Ali Anwar","doi":"arxiv-2409.07631","DOIUrl":null,"url":null,"abstract":"Federated Learning is a well-researched approach for collaboratively training\nmachine learning models across decentralized data while preserving privacy.\nHowever, integrating Homomorphic Encryption to ensure data confidentiality\nintroduces significant computational and communication overheads, particularly\nin heterogeneous environments where clients have varying computational\ncapacities and security needs. In this paper, we propose HERL, a Reinforcement\nLearning-based approach that uses Q-Learning to dynamically optimize encryption\nparameters, specifically the polynomial modulus degree, $N$, and the\ncoefficient modulus, $q$, across different client tiers. Our proposed method\ninvolves first profiling and tiering clients according to the chosen clustering\napproach, followed by dynamically selecting the most suitable encryption\nparameters using an RL-agent. Experimental results demonstrate that our\napproach significantly reduces the computational overhead while maintaining\nutility and a high level of security. Empirical results show that HERL improves\nutility by 17%, reduces the convergence time by up to 24%, and increases\nconvergence efficiency by up to 30%, with minimal security loss.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HERL: Tiered Federated Learning with Adaptive Homomorphic Encryption using Reinforcement Learning\",\"authors\":\"Jiaxang Tang, Zeshan Fayyaz, Mohammad A. Salahuddin, Raouf Boutaba, Zhi-Li Zhang, Ali Anwar\",\"doi\":\"arxiv-2409.07631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated Learning is a well-researched approach for collaboratively training\\nmachine learning models across decentralized data while preserving privacy.\\nHowever, integrating Homomorphic Encryption to ensure data confidentiality\\nintroduces significant computational and communication overheads, particularly\\nin heterogeneous environments where clients have varying computational\\ncapacities and security needs. In this paper, we propose HERL, a Reinforcement\\nLearning-based approach that uses Q-Learning to dynamically optimize encryption\\nparameters, specifically the polynomial modulus degree, $N$, and the\\ncoefficient modulus, $q$, across different client tiers. Our proposed method\\ninvolves first profiling and tiering clients according to the chosen clustering\\napproach, followed by dynamically selecting the most suitable encryption\\nparameters using an RL-agent. Experimental results demonstrate that our\\napproach significantly reduces the computational overhead while maintaining\\nutility and a high level of security. Empirical results show that HERL improves\\nutility by 17%, reduces the convergence time by up to 24%, and increases\\nconvergence efficiency by up to 30%, with minimal security loss.\",\"PeriodicalId\":501422,\"journal\":{\"name\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联盟学习(Federated Learning)是一种经过深入研究的方法,用于在保护隐私的前提下跨分散数据协作训练机器学习模型。然而,集成同态加密技术以确保数据保密性会带来巨大的计算和通信开销,尤其是在客户端具有不同计算能力和安全需求的异构环境中。本文提出的 HERL 是一种基于强化学习的方法,它使用 Q 学习来动态优化加密参数,特别是跨不同客户层的多项式模数度 $N$ 和系数模数 $q$。我们提出的方法首先根据所选的聚类方法对客户进行剖析和分层,然后使用 RL 代理动态选择最合适的加密参数。实验结果表明,我们的方法在保持实用性和高安全性的同时,显著降低了计算开销。实证结果表明,HERL 将实用性提高了 17%,收敛时间缩短了 24%,收敛效率提高了 30%,而安全性损失却很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HERL: Tiered Federated Learning with Adaptive Homomorphic Encryption using Reinforcement Learning
Federated Learning is a well-researched approach for collaboratively training machine learning models across decentralized data while preserving privacy. However, integrating Homomorphic Encryption to ensure data confidentiality introduces significant computational and communication overheads, particularly in heterogeneous environments where clients have varying computational capacities and security needs. In this paper, we propose HERL, a Reinforcement Learning-based approach that uses Q-Learning to dynamically optimize encryption parameters, specifically the polynomial modulus degree, $N$, and the coefficient modulus, $q$, across different client tiers. Our proposed method involves first profiling and tiering clients according to the chosen clustering approach, followed by dynamically selecting the most suitable encryption parameters using an RL-agent. Experimental results demonstrate that our approach significantly reduces the computational overhead while maintaining utility and a high level of security. Empirical results show that HERL improves utility by 17%, reduces the convergence time by up to 24%, and increases convergence efficiency by up to 30%, with minimal security loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信