大规模模拟的模型输入验证

Rumyana Neykova, Derek Groen
{"title":"大规模模拟的模型输入验证","authors":"Rumyana Neykova, Derek Groen","doi":"arxiv-2409.05768","DOIUrl":null,"url":null,"abstract":"Reliable simulations are critical for analyzing and understanding complex\nsystems, but their accuracy depends on correct input data. Incorrect inputs\nsuch as invalid or out-of-range values, missing data, and format\ninconsistencies can cause simulation crashes or unnoticed result distortions,\nultimately undermining the validity of the conclusions. This paper presents a\nmethodology for verifying the validity of input data in simulations, a process\nwe term model input verification (MIV). We implement this approach in FabGuard,\na toolset that uses established data schema and validation tools for the\nspecific needs of simulation modeling. We introduce a formalism for\ncategorizing MIV patterns and offer a streamlined verification pipeline that\nintegrates into existing simulation workflows. FabGuard's applicability is\ndemonstrated across three diverse domains: conflict-driven migration, disaster\nevacuation, and disease spread models. We also explore the use of Large\nLanguage Models (LLMs) for automating constraint generation and inference. In a\ncase study with a migration simulation, LLMs not only correctly inferred 22 out\nof 23 developer-defined constraints, but also identified errors in existing\nconstraints and proposed new, valid constraints. Our evaluation demonstrates\nthat MIV is feasible on large datasets, with FabGuard efficiently processing\n12,000 input files in 140 seconds and maintaining consistent performance across\nvarying file sizes.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Input Verification of Large Scale Simulations\",\"authors\":\"Rumyana Neykova, Derek Groen\",\"doi\":\"arxiv-2409.05768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable simulations are critical for analyzing and understanding complex\\nsystems, but their accuracy depends on correct input data. Incorrect inputs\\nsuch as invalid or out-of-range values, missing data, and format\\ninconsistencies can cause simulation crashes or unnoticed result distortions,\\nultimately undermining the validity of the conclusions. This paper presents a\\nmethodology for verifying the validity of input data in simulations, a process\\nwe term model input verification (MIV). We implement this approach in FabGuard,\\na toolset that uses established data schema and validation tools for the\\nspecific needs of simulation modeling. We introduce a formalism for\\ncategorizing MIV patterns and offer a streamlined verification pipeline that\\nintegrates into existing simulation workflows. FabGuard's applicability is\\ndemonstrated across three diverse domains: conflict-driven migration, disaster\\nevacuation, and disease spread models. We also explore the use of Large\\nLanguage Models (LLMs) for automating constraint generation and inference. In a\\ncase study with a migration simulation, LLMs not only correctly inferred 22 out\\nof 23 developer-defined constraints, but also identified errors in existing\\nconstraints and proposed new, valid constraints. Our evaluation demonstrates\\nthat MIV is feasible on large datasets, with FabGuard efficiently processing\\n12,000 input files in 140 seconds and maintaining consistent performance across\\nvarying file sizes.\",\"PeriodicalId\":501422,\"journal\":{\"name\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可靠的模拟对于分析和理解复杂系统至关重要,但其准确性取决于正确的输入数据。不正确的输入,如无效或超出范围的值、数据缺失和格式不一致,会导致仿真崩溃或结果失真而不被察觉,最终破坏结论的有效性。本文介绍了一种验证仿真输入数据有效性的方法,我们称之为模型输入验证 (MIV)。我们在 FabGuard 中实现了这一方法,FabGuard 是一个工具集,它使用成熟的数据模式和验证工具来满足仿真建模的特定需求。我们引入了一种用于对 MIV 模式进行分类的形式主义,并提供了一种可集成到现有仿真工作流中的简化验证管道。FabGuard 的适用性在三个不同领域得到了展示:冲突驱动的迁移、灾难性撤离和疾病传播模型。我们还探索了如何使用大型语言模型(LLM)来自动生成约束和推理。在一项迁移模拟案例研究中,LLM 不仅正确推断出了 23 个开发人员定义的约束条件中的 22 个,而且还识别出了现有约束条件中的错误,并提出了新的有效约束条件。我们的评估证明了 MIV 在大型数据集上的可行性,FabGuard 在 140 秒内高效处理了 12,000 个输入文件,并在文件大小不同的情况下保持了一致的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Input Verification of Large Scale Simulations
Reliable simulations are critical for analyzing and understanding complex systems, but their accuracy depends on correct input data. Incorrect inputs such as invalid or out-of-range values, missing data, and format inconsistencies can cause simulation crashes or unnoticed result distortions, ultimately undermining the validity of the conclusions. This paper presents a methodology for verifying the validity of input data in simulations, a process we term model input verification (MIV). We implement this approach in FabGuard, a toolset that uses established data schema and validation tools for the specific needs of simulation modeling. We introduce a formalism for categorizing MIV patterns and offer a streamlined verification pipeline that integrates into existing simulation workflows. FabGuard's applicability is demonstrated across three diverse domains: conflict-driven migration, disaster evacuation, and disease spread models. We also explore the use of Large Language Models (LLMs) for automating constraint generation and inference. In a case study with a migration simulation, LLMs not only correctly inferred 22 out of 23 developer-defined constraints, but also identified errors in existing constraints and proposed new, valid constraints. Our evaluation demonstrates that MIV is feasible on large datasets, with FabGuard efficiently processing 12,000 input files in 140 seconds and maintaining consistent performance across varying file sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信