Hao Ding, Jingyu Hou, Kun Zhai, Xin Gao, Zhiwei Shen, Junquan Huang, Bingchao Yang, Feng Ke, Congpu Mu, Fusheng Wen, Jianyong Xiang, Bochong Wang, Tianyu Xue, Anmin Nie, Xiaobing Liu, Lin Wang, Xiang‐Feng Zhou, Zhongyuan Liu
{"title":"通过压力调节的层间键形成实现三磷酸铟的超导性","authors":"Hao Ding, Jingyu Hou, Kun Zhai, Xin Gao, Zhiwei Shen, Junquan Huang, Bingchao Yang, Feng Ke, Congpu Mu, Fusheng Wen, Jianyong Xiang, Bochong Wang, Tianyu Xue, Anmin Nie, Xiaobing Liu, Lin Wang, Xiang‐Feng Zhou, Zhongyuan Liu","doi":"10.1002/pssr.202400206","DOIUrl":null,"url":null,"abstract":"Tuning interlayer interactions offer an alternative approach to access novel electronic structure and intriguing physical properties in layered materials. Here, the emergence of a new form of superconductivity in two‐dimensional (2D) binary phosphides by strengthening the interlayer coupling with lattice compression is reported. Electrical transport measurements show strong evidence of superconductivity in InP<jats:sub>3</jats:sub> with the highest critical temperature (<jats:italic>T</jats:italic><jats:sub>c</jats:sub>) of 9.5 K at 45.1 GPa. Raman and X‐ray diffraction (XRD) measurements indicate that the interlayer interactions are dramatically modulated under compression, along with the deformation of local In–P bipyramid structure and reduction of the interlayer distances, which eventually results in the formation of In–P bonds between neighboring In–P bipyramids and a <jats:italic>R</jats:italic><jats:italic>m</jats:italic> to <jats:italic>Cmcm</jats:italic> structural transition. First‐principles density functional theory (DFT) calculations reveal that pressure enhances the interlayer interactions, which increases the density of states (DOS) near the Fermi surface (<jats:italic>N</jats:italic>(<jats:italic>E</jats:italic><jats:sub>F</jats:sub>)) and strengthens the electron–phonon coupling. Consequently, this favors the occurrence of superconductivity in compressed InP<jats:sub>3</jats:sub>. This study not only introduces a new superconductivity phase with enhanced electron–phonon coupling in binary phosphides, but also provides a platform for exploring the pressure effect on interlayer interactions in material systems with corrugated layered structure.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"45 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of Superconductivity in Indium Triphosphate via Pressure‐Tuned Interlayer Bond Formation\",\"authors\":\"Hao Ding, Jingyu Hou, Kun Zhai, Xin Gao, Zhiwei Shen, Junquan Huang, Bingchao Yang, Feng Ke, Congpu Mu, Fusheng Wen, Jianyong Xiang, Bochong Wang, Tianyu Xue, Anmin Nie, Xiaobing Liu, Lin Wang, Xiang‐Feng Zhou, Zhongyuan Liu\",\"doi\":\"10.1002/pssr.202400206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tuning interlayer interactions offer an alternative approach to access novel electronic structure and intriguing physical properties in layered materials. Here, the emergence of a new form of superconductivity in two‐dimensional (2D) binary phosphides by strengthening the interlayer coupling with lattice compression is reported. Electrical transport measurements show strong evidence of superconductivity in InP<jats:sub>3</jats:sub> with the highest critical temperature (<jats:italic>T</jats:italic><jats:sub>c</jats:sub>) of 9.5 K at 45.1 GPa. Raman and X‐ray diffraction (XRD) measurements indicate that the interlayer interactions are dramatically modulated under compression, along with the deformation of local In–P bipyramid structure and reduction of the interlayer distances, which eventually results in the formation of In–P bonds between neighboring In–P bipyramids and a <jats:italic>R</jats:italic><jats:italic>m</jats:italic> to <jats:italic>Cmcm</jats:italic> structural transition. First‐principles density functional theory (DFT) calculations reveal that pressure enhances the interlayer interactions, which increases the density of states (DOS) near the Fermi surface (<jats:italic>N</jats:italic>(<jats:italic>E</jats:italic><jats:sub>F</jats:sub>)) and strengthens the electron–phonon coupling. Consequently, this favors the occurrence of superconductivity in compressed InP<jats:sub>3</jats:sub>. This study not only introduces a new superconductivity phase with enhanced electron–phonon coupling in binary phosphides, but also provides a platform for exploring the pressure effect on interlayer interactions in material systems with corrugated layered structure.\",\"PeriodicalId\":54619,\"journal\":{\"name\":\"Physica Status Solidi-Rapid Research Letters\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi-Rapid Research Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssr.202400206\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400206","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Emergence of Superconductivity in Indium Triphosphate via Pressure‐Tuned Interlayer Bond Formation
Tuning interlayer interactions offer an alternative approach to access novel electronic structure and intriguing physical properties in layered materials. Here, the emergence of a new form of superconductivity in two‐dimensional (2D) binary phosphides by strengthening the interlayer coupling with lattice compression is reported. Electrical transport measurements show strong evidence of superconductivity in InP3 with the highest critical temperature (Tc) of 9.5 K at 45.1 GPa. Raman and X‐ray diffraction (XRD) measurements indicate that the interlayer interactions are dramatically modulated under compression, along with the deformation of local In–P bipyramid structure and reduction of the interlayer distances, which eventually results in the formation of In–P bonds between neighboring In–P bipyramids and a Rm to Cmcm structural transition. First‐principles density functional theory (DFT) calculations reveal that pressure enhances the interlayer interactions, which increases the density of states (DOS) near the Fermi surface (N(EF)) and strengthens the electron–phonon coupling. Consequently, this favors the occurrence of superconductivity in compressed InP3. This study not only introduces a new superconductivity phase with enhanced electron–phonon coupling in binary phosphides, but also provides a platform for exploring the pressure effect on interlayer interactions in material systems with corrugated layered structure.
期刊介绍:
Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers.
The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.