圆形物体在水中的融化速度并不是最慢的

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Rui Yang, Thijs van den Ham, Roberto Verzicco, Detlef Lohse, Sander G. Huisman
{"title":"圆形物体在水中的融化速度并不是最慢的","authors":"Rui Yang, Thijs van den Ham, Roberto Verzicco, Detlef Lohse, Sander G. Huisman","doi":"10.1103/physrevfluids.9.083501","DOIUrl":null,"url":null,"abstract":"We report on the melting dynamics of ice suspended in fresh water and subject to natural convective flows. Using direct numerical simulations we investigate the melt rate of ellipsoidal objects for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2.32</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup><mo>≤</mo><mtext>Ra</mtext><mo>≤</mo><mn>7.61</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow></math>, where Ra is the Rayleigh number defined with the temperature difference between the ice and the surrounding water. We reveal that the system exhibits nonmonotonic behavior in three control parameters. As a function of the aspect ratio of the ellipsoid, the melting time shows a distinct minimum that is different from a disk which has the minimum perimeter. Furthermore, also with Ra the system shows a nonmonotonic trend, since for large Ra and large aspect ratio the flow separates, leading to distinctly different dynamics. Lastly, since the density of water is nonmonotonic with temperature, the melt rate depends nonmonotonically also on the ambient temperature, as for intermediate temperatures <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><mn>4</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi><mo> </mo><mo>–</mo><mo> </mo><mn>7</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi><mo>)</mo></mrow></math> the flow is (partially) reversed. In general, the shape which melts the slowest is quite distinct from that of a disk.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"177 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circular objects do not melt the slowest in water\",\"authors\":\"Rui Yang, Thijs van den Ham, Roberto Verzicco, Detlef Lohse, Sander G. Huisman\",\"doi\":\"10.1103/physrevfluids.9.083501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on the melting dynamics of ice suspended in fresh water and subject to natural convective flows. Using direct numerical simulations we investigate the melt rate of ellipsoidal objects for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>2.32</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup><mo>≤</mo><mtext>Ra</mtext><mo>≤</mo><mn>7.61</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></mrow></math>, where Ra is the Rayleigh number defined with the temperature difference between the ice and the surrounding water. We reveal that the system exhibits nonmonotonic behavior in three control parameters. As a function of the aspect ratio of the ellipsoid, the melting time shows a distinct minimum that is different from a disk which has the minimum perimeter. Furthermore, also with Ra the system shows a nonmonotonic trend, since for large Ra and large aspect ratio the flow separates, leading to distinctly different dynamics. Lastly, since the density of water is nonmonotonic with temperature, the melt rate depends nonmonotonically also on the ambient temperature, as for intermediate temperatures <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>(</mo><mn>4</mn><msup><mspace width=\\\"0.16em\\\"></mspace><mo>∘</mo></msup><mi mathvariant=\\\"normal\\\">C</mi><mo> </mo><mo>–</mo><mo> </mo><mn>7</mn><msup><mspace width=\\\"0.16em\\\"></mspace><mo>∘</mo></msup><mi mathvariant=\\\"normal\\\">C</mi><mo>)</mo></mrow></math> the flow is (partially) reversed. In general, the shape which melts the slowest is quite distinct from that of a disk.\",\"PeriodicalId\":20160,\"journal\":{\"name\":\"Physical Review Fluids\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Fluids\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevfluids.9.083501\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.083501","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了悬浮在淡水中并受自然对流影响的冰的融化动力学。通过直接数值模拟,我们研究了椭圆形物体在 2.32×104≤Ra≤7.61×108 条件下的熔化率,其中 Ra 是用冰与周围水的温差定义的瑞利数。我们发现,该系统在三个控制参数中表现出非单调行为。作为椭圆体长宽比的函数,熔化时间显示出明显的最小值,这与具有最小周长的圆盘不同。此外,随着 Ra 的增大,系统也呈现出非单调趋势,因为在 Ra 大和长宽比大的情况下,水流会分离,从而导致截然不同的动力学。最后,由于水的密度随温度的变化是非单调的,因此熔化率也非单调地取决于环境温度,因为在中间温度(4∘C - 7∘C)下,流动(部分)是反向的。一般来说,熔化速度最慢的形状与圆盘形状截然不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Circular objects do not melt the slowest in water

Circular objects do not melt the slowest in water
We report on the melting dynamics of ice suspended in fresh water and subject to natural convective flows. Using direct numerical simulations we investigate the melt rate of ellipsoidal objects for 2.32×104Ra7.61×108, where Ra is the Rayleigh number defined with the temperature difference between the ice and the surrounding water. We reveal that the system exhibits nonmonotonic behavior in three control parameters. As a function of the aspect ratio of the ellipsoid, the melting time shows a distinct minimum that is different from a disk which has the minimum perimeter. Furthermore, also with Ra the system shows a nonmonotonic trend, since for large Ra and large aspect ratio the flow separates, leading to distinctly different dynamics. Lastly, since the density of water is nonmonotonic with temperature, the melt rate depends nonmonotonically also on the ambient temperature, as for intermediate temperatures (4C  7C) the flow is (partially) reversed. In general, the shape which melts the slowest is quite distinct from that of a disk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Fluids
Physical Review Fluids Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
5.10
自引率
11.10%
发文量
488
期刊介绍: Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信