利用深度并行挤压和激励以及关注 Unet 自动进行淋巴结分割

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhaorui Liu, Hao Chen, Caiyin Tang, Quan Li, Tao Peng
{"title":"利用深度并行挤压和激励以及关注 Unet 自动进行淋巴结分割","authors":"Zhaorui Liu, Hao Chen, Caiyin Tang, Quan Li, Tao Peng","doi":"10.1007/s00530-024-01465-y","DOIUrl":null,"url":null,"abstract":"<p>Automatic segmentation and lymph node (LN) detection for cancer staging are critical. In clinical practice, computed tomography (CT) and positron emission tomography (PET) imaging detect abnormal LNs. Yet, it is still a difficult task due to the low contrast of LNs and surrounding soft tissues and the variation in nodal size and shape. We designed a location-guided 3D dual network for LN segmentation. A localization module generates Gaussian masks focused on LNs centralized within selected regions of interest (ROI). Our segmentation model incorporated squeeze &amp; excitation (SE) and attention gate (AG) modules into a conventional 3D UNet architecture to boost useful feature utilization and increase usable feature utilization and segmentation accuracy. Lastly, we provide a simple boundary refinement module to polish the outcomes. We assessed the location-guided LN segmentation network’s performance on a clinical dataset with head and neck cancer. The location-guided network outperformed a comparable architecture without the Gaussian mask in terms of performance.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic lymph node segmentation using deep parallel squeeze & excitation and attention Unet\",\"authors\":\"Zhaorui Liu, Hao Chen, Caiyin Tang, Quan Li, Tao Peng\",\"doi\":\"10.1007/s00530-024-01465-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Automatic segmentation and lymph node (LN) detection for cancer staging are critical. In clinical practice, computed tomography (CT) and positron emission tomography (PET) imaging detect abnormal LNs. Yet, it is still a difficult task due to the low contrast of LNs and surrounding soft tissues and the variation in nodal size and shape. We designed a location-guided 3D dual network for LN segmentation. A localization module generates Gaussian masks focused on LNs centralized within selected regions of interest (ROI). Our segmentation model incorporated squeeze &amp; excitation (SE) and attention gate (AG) modules into a conventional 3D UNet architecture to boost useful feature utilization and increase usable feature utilization and segmentation accuracy. Lastly, we provide a simple boundary refinement module to polish the outcomes. We assessed the location-guided LN segmentation network’s performance on a clinical dataset with head and neck cancer. The location-guided network outperformed a comparable architecture without the Gaussian mask in terms of performance.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00530-024-01465-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01465-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

自动分割和淋巴结(LN)检测对于癌症分期至关重要。在临床实践中,计算机断层扫描(CT)和正电子发射断层扫描(PET)成像可检测异常淋巴结。然而,由于 LN 与周围软组织的对比度较低,而且结节的大小和形状各不相同,因此这仍然是一项艰巨的任务。我们设计了一种用于 LN 分割的定位导航 3D 双网络。定位模块生成高斯掩膜,聚焦于集中在选定感兴趣区(ROI)内的LN。我们的分割模型将挤压& 激发(SE)和注意门(AG)模块纳入传统的三维 UNet 架构,以提高有用特征的利用率,并增加有用特征的利用率和分割准确性。最后,我们提供了一个简单的边界细化模块来完善结果。我们在头颈部癌症临床数据集上评估了位置引导的 LN 分割网络的性能。就性能而言,位置引导网络优于没有高斯掩膜的同类架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automatic lymph node segmentation using deep parallel squeeze & excitation and attention Unet

Automatic lymph node segmentation using deep parallel squeeze & excitation and attention Unet

Automatic segmentation and lymph node (LN) detection for cancer staging are critical. In clinical practice, computed tomography (CT) and positron emission tomography (PET) imaging detect abnormal LNs. Yet, it is still a difficult task due to the low contrast of LNs and surrounding soft tissues and the variation in nodal size and shape. We designed a location-guided 3D dual network for LN segmentation. A localization module generates Gaussian masks focused on LNs centralized within selected regions of interest (ROI). Our segmentation model incorporated squeeze & excitation (SE) and attention gate (AG) modules into a conventional 3D UNet architecture to boost useful feature utilization and increase usable feature utilization and segmentation accuracy. Lastly, we provide a simple boundary refinement module to polish the outcomes. We assessed the location-guided LN segmentation network’s performance on a clinical dataset with head and neck cancer. The location-guided network outperformed a comparable architecture without the Gaussian mask in terms of performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信