{"title":"有机发射器的分子聚合与分解,实现战略性发射调制","authors":"Arabinda Mallick, Provakar Paul, Saikat Samanta, Arunavo Chatterjee, Bibhas Mondal, Ujjal Kanti Roy, Tapas Majumdar","doi":"10.1002/cnma.202400474","DOIUrl":null,"url":null,"abstract":"“Aggregation‐caused fluorescence quenching” is a well‐established phenomenon by now. The procedure from aggregation to disaggregation usually causes a revival of emission signals, and thus affords an interesting new path to design “turn‐on” optical probes. For this purpose, the photophysics, energetics and dynamics of supra‐molecular encapsulation induced disaggregation of a self‐assembled bis‐indole derivative, 3,3’‐bisindolyl(phenyl)methane (BIPM), and its further reaggregation are reported herein. Compared to disaggregation strategies, its reverse process, reaggregation, has received much less attention so far. The gamma‐cyclodextrin (γ‐CD) molecules were found to be effective in disaggregating the BIPM associations and emission enhancement, whereas, the incorporation of guanidine hydrochloride (Gnd‐HCl) into the aqueous solution of disaggregated BIPM monomers in γ‐CD environment resulted in probe reaggregation leading to quenching of the restored emission. Here, γ‐CD and Gnd‐HCl can be considered as the molecular modulators of BIPM fluorescence based on the disaggregation–reaggregation mechanisms. The spectroscopic and thermodynamic findings associated with the disaggregation‐reaggregation processes might be insightful in reversible controlling of molecular aggregation and the associated optical properties for diverse applications.","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"83 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Aggregation to and from Disaggregation of an Organic Emitter for Strategic Emission Modulation\",\"authors\":\"Arabinda Mallick, Provakar Paul, Saikat Samanta, Arunavo Chatterjee, Bibhas Mondal, Ujjal Kanti Roy, Tapas Majumdar\",\"doi\":\"10.1002/cnma.202400474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"“Aggregation‐caused fluorescence quenching” is a well‐established phenomenon by now. The procedure from aggregation to disaggregation usually causes a revival of emission signals, and thus affords an interesting new path to design “turn‐on” optical probes. For this purpose, the photophysics, energetics and dynamics of supra‐molecular encapsulation induced disaggregation of a self‐assembled bis‐indole derivative, 3,3’‐bisindolyl(phenyl)methane (BIPM), and its further reaggregation are reported herein. Compared to disaggregation strategies, its reverse process, reaggregation, has received much less attention so far. The gamma‐cyclodextrin (γ‐CD) molecules were found to be effective in disaggregating the BIPM associations and emission enhancement, whereas, the incorporation of guanidine hydrochloride (Gnd‐HCl) into the aqueous solution of disaggregated BIPM monomers in γ‐CD environment resulted in probe reaggregation leading to quenching of the restored emission. Here, γ‐CD and Gnd‐HCl can be considered as the molecular modulators of BIPM fluorescence based on the disaggregation–reaggregation mechanisms. The spectroscopic and thermodynamic findings associated with the disaggregation‐reaggregation processes might be insightful in reversible controlling of molecular aggregation and the associated optical properties for diverse applications.\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cnma.202400474\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cnma.202400474","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Molecular Aggregation to and from Disaggregation of an Organic Emitter for Strategic Emission Modulation
“Aggregation‐caused fluorescence quenching” is a well‐established phenomenon by now. The procedure from aggregation to disaggregation usually causes a revival of emission signals, and thus affords an interesting new path to design “turn‐on” optical probes. For this purpose, the photophysics, energetics and dynamics of supra‐molecular encapsulation induced disaggregation of a self‐assembled bis‐indole derivative, 3,3’‐bisindolyl(phenyl)methane (BIPM), and its further reaggregation are reported herein. Compared to disaggregation strategies, its reverse process, reaggregation, has received much less attention so far. The gamma‐cyclodextrin (γ‐CD) molecules were found to be effective in disaggregating the BIPM associations and emission enhancement, whereas, the incorporation of guanidine hydrochloride (Gnd‐HCl) into the aqueous solution of disaggregated BIPM monomers in γ‐CD environment resulted in probe reaggregation leading to quenching of the restored emission. Here, γ‐CD and Gnd‐HCl can be considered as the molecular modulators of BIPM fluorescence based on the disaggregation–reaggregation mechanisms. The spectroscopic and thermodynamic findings associated with the disaggregation‐reaggregation processes might be insightful in reversible controlling of molecular aggregation and the associated optical properties for diverse applications.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.