基于多尺度空间信息感知的遥感图像云去除技术

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Aozhe Dou, Yang Hao, Weifeng Liu, Liangliang Li, Zhenzhong Wang, Baodi Liu
{"title":"基于多尺度空间信息感知的遥感图像云去除技术","authors":"Aozhe Dou, Yang Hao, Weifeng Liu, Liangliang Li, Zhenzhong Wang, Baodi Liu","doi":"10.1007/s00530-024-01442-5","DOIUrl":null,"url":null,"abstract":"<p>Remote sensing imagery is indispensable in diverse domains, including geographic information systems, climate monitoring, agricultural planning, and disaster management. Nonetheless, cloud cover can drastically degrade the utility and quality of these images. Current deep learning-based cloud removal methods rely on convolutional neural networks to extract features at the same scale, which can overlook detailed and global information, resulting in suboptimal cloud removal performance. To overcome these challenges, we develop a method for cloud removal that leverages multi-scale spatial information perception. Our technique employs convolution kernels of various sizes, enabling the integration of both global semantic information and local detail information. An attention mechanism enhances this process by targeting key areas within the images, and dynamically adjusting channel weights to improve feature reconstruction. We compared our method with current popular cloud removal methods across three datasets, and the results show that our proposed method improves metrics such as PSNR, SSIM, and cosine similarity, verifying the effectiveness of our method in cloud removal.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote sensing image cloud removal based on multi-scale spatial information perception\",\"authors\":\"Aozhe Dou, Yang Hao, Weifeng Liu, Liangliang Li, Zhenzhong Wang, Baodi Liu\",\"doi\":\"10.1007/s00530-024-01442-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Remote sensing imagery is indispensable in diverse domains, including geographic information systems, climate monitoring, agricultural planning, and disaster management. Nonetheless, cloud cover can drastically degrade the utility and quality of these images. Current deep learning-based cloud removal methods rely on convolutional neural networks to extract features at the same scale, which can overlook detailed and global information, resulting in suboptimal cloud removal performance. To overcome these challenges, we develop a method for cloud removal that leverages multi-scale spatial information perception. Our technique employs convolution kernels of various sizes, enabling the integration of both global semantic information and local detail information. An attention mechanism enhances this process by targeting key areas within the images, and dynamically adjusting channel weights to improve feature reconstruction. We compared our method with current popular cloud removal methods across three datasets, and the results show that our proposed method improves metrics such as PSNR, SSIM, and cosine similarity, verifying the effectiveness of our method in cloud removal.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00530-024-01442-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01442-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

遥感图像在地理信息系统、气候监测、农业规划和灾害管理等多个领域都不可或缺。然而,云层会大大降低这些图像的实用性和质量。目前基于深度学习的云层去除方法依赖卷积神经网络提取同一尺度的特征,这可能会忽略细节和全局信息,导致云层去除效果不理想。为了克服这些挑战,我们开发了一种利用多尺度空间信息感知的去云方法。我们的技术采用了不同大小的卷积核,能够整合全局语义信息和局部细节信息。注意力机制通过锁定图像中的关键区域和动态调整通道权重来改进特征重建,从而增强了这一过程。我们在三个数据集上比较了我们的方法和当前流行的云去除方法,结果表明我们提出的方法提高了 PSNR、SSIM 和余弦相似度等指标,验证了我们的方法在云去除方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Remote sensing image cloud removal based on multi-scale spatial information perception

Remote sensing image cloud removal based on multi-scale spatial information perception

Remote sensing imagery is indispensable in diverse domains, including geographic information systems, climate monitoring, agricultural planning, and disaster management. Nonetheless, cloud cover can drastically degrade the utility and quality of these images. Current deep learning-based cloud removal methods rely on convolutional neural networks to extract features at the same scale, which can overlook detailed and global information, resulting in suboptimal cloud removal performance. To overcome these challenges, we develop a method for cloud removal that leverages multi-scale spatial information perception. Our technique employs convolution kernels of various sizes, enabling the integration of both global semantic information and local detail information. An attention mechanism enhances this process by targeting key areas within the images, and dynamically adjusting channel weights to improve feature reconstruction. We compared our method with current popular cloud removal methods across three datasets, and the results show that our proposed method improves metrics such as PSNR, SSIM, and cosine similarity, verifying the effectiveness of our method in cloud removal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信