Tran Minh Thi, Nguyen Mau Lam, Do Khanh Tung, Nguyen Manh Nghia, Duong Quoc Van, Vu Quoc Manh, Nguyen Thi Bich Viet, Duong Khanh Linh, Nguyen Thuy Chinh, Thai Hoang, Ştefan Ţălu, Vu Quoc Trung
{"title":"利用聚苯胺和掺杂锌的 Fe3O4 纳米复合材料在水中吸收砷的研究","authors":"Tran Minh Thi, Nguyen Mau Lam, Do Khanh Tung, Nguyen Manh Nghia, Duong Quoc Van, Vu Quoc Manh, Nguyen Thi Bich Viet, Duong Khanh Linh, Nguyen Thuy Chinh, Thai Hoang, Ştefan Ţălu, Vu Quoc Trung","doi":"10.1088/2043-6262/ad6e5b","DOIUrl":null,"url":null,"abstract":"The polyaniline/Fe<sub>2.9</sub>Zn<sub>0.1</sub>O<sub>4</sub> (PANI/Fe<sub>2.9</sub>Zn<sub>0.1</sub>O<sub>4</sub>) nanoparticles with different mass ratios were synthesized by both co-precipitation and <italic toggle=\"yes\">in situ</italic> polymerization methods. The FT-IR spectra and DTA analyses showed the involvement of PANI in the nanocomposite samples. The grain size of samples measured by SEM ranges from 25 to 40 nm. The magnetization of samples at 300 K, H = 11000 Oe decreased from 65 to 43 emu g<sup>−1</sup> as PANI/Fe<sub>2.9</sub>Zn<sub>0.1</sub>O<sub>4</sub> mass ratio increased from 9% to 40%. At pH 7 and 300 K, the maximum arsenic (III) adsorption capacities of sample S<sub>1</sub> (mass ratio of 9%) q<sub>max</sub> = 43.48 mg g<sup>−1</sup> was higher than that of others and Fe<sub>3</sub>O<sub>4</sub>. Additionally, the substitution of Fe<sup>2+</sup> ions by Zn<sup>2+</sup> ions and the presence of PANI in samples contributed to improving the magnetic and chemical stability of samples over time. Furthermore, these materials could be reused after desorption in a solution at pH 14.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"409 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the nanocomposites of polyaniline and Zn doped Fe3O4 using for arsenic absorption in water\",\"authors\":\"Tran Minh Thi, Nguyen Mau Lam, Do Khanh Tung, Nguyen Manh Nghia, Duong Quoc Van, Vu Quoc Manh, Nguyen Thi Bich Viet, Duong Khanh Linh, Nguyen Thuy Chinh, Thai Hoang, Ştefan Ţălu, Vu Quoc Trung\",\"doi\":\"10.1088/2043-6262/ad6e5b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The polyaniline/Fe<sub>2.9</sub>Zn<sub>0.1</sub>O<sub>4</sub> (PANI/Fe<sub>2.9</sub>Zn<sub>0.1</sub>O<sub>4</sub>) nanoparticles with different mass ratios were synthesized by both co-precipitation and <italic toggle=\\\"yes\\\">in situ</italic> polymerization methods. The FT-IR spectra and DTA analyses showed the involvement of PANI in the nanocomposite samples. The grain size of samples measured by SEM ranges from 25 to 40 nm. The magnetization of samples at 300 K, H = 11000 Oe decreased from 65 to 43 emu g<sup>−1</sup> as PANI/Fe<sub>2.9</sub>Zn<sub>0.1</sub>O<sub>4</sub> mass ratio increased from 9% to 40%. At pH 7 and 300 K, the maximum arsenic (III) adsorption capacities of sample S<sub>1</sub> (mass ratio of 9%) q<sub>max</sub> = 43.48 mg g<sup>−1</sup> was higher than that of others and Fe<sub>3</sub>O<sub>4</sub>. Additionally, the substitution of Fe<sup>2+</sup> ions by Zn<sup>2+</sup> ions and the presence of PANI in samples contributed to improving the magnetic and chemical stability of samples over time. Furthermore, these materials could be reused after desorption in a solution at pH 14.\",\"PeriodicalId\":7359,\"journal\":{\"name\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"volume\":\"409 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2043-6262/ad6e5b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/ad6e5b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Study on the nanocomposites of polyaniline and Zn doped Fe3O4 using for arsenic absorption in water
The polyaniline/Fe2.9Zn0.1O4 (PANI/Fe2.9Zn0.1O4) nanoparticles with different mass ratios were synthesized by both co-precipitation and in situ polymerization methods. The FT-IR spectra and DTA analyses showed the involvement of PANI in the nanocomposite samples. The grain size of samples measured by SEM ranges from 25 to 40 nm. The magnetization of samples at 300 K, H = 11000 Oe decreased from 65 to 43 emu g−1 as PANI/Fe2.9Zn0.1O4 mass ratio increased from 9% to 40%. At pH 7 and 300 K, the maximum arsenic (III) adsorption capacities of sample S1 (mass ratio of 9%) qmax = 43.48 mg g−1 was higher than that of others and Fe3O4. Additionally, the substitution of Fe2+ ions by Zn2+ ions and the presence of PANI in samples contributed to improving the magnetic and chemical stability of samples over time. Furthermore, these materials could be reused after desorption in a solution at pH 14.