皂素介导和微波辅助的银纳米粒子生物合成:制备和抗癌评估

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sesha Subramanian Murugan, Pandurang Appana Dalavi, Pramod K Gupta, Won Hur, Ramkumar Pillappan, Jayachandran Venkatesan and Gi Hun Seong
{"title":"皂素介导和微波辅助的银纳米粒子生物合成:制备和抗癌评估","authors":"Sesha Subramanian Murugan, Pandurang Appana Dalavi, Pramod K Gupta, Won Hur, Ramkumar Pillappan, Jayachandran Venkatesan and Gi Hun Seong","doi":"10.1088/2043-6262/ad71a9","DOIUrl":null,"url":null,"abstract":"Silver nanoparticles have been extensively studied and used for biological and biomedical applications due to its antimicrobial properties. In this study, we have developed silver nanoparticles with saponin (S-AgNPs) using microwave-mediated methodology and physiochemically characterised and evaluated its anticancer potential. According to UV–visible spectroscopy, S-AgNPs exhibited a maximum absorption peak at a wavelength of 420 nm. DLS analysis revealed that S-AgNPs have an average diameter of around 133.8 ± 10 nm. HR-TEM analysis confirms the spherical morphology of S-AgNPs. Further, the anticancer effect of S-AgNPs was validated using A459 lung cancer cells by in vitro cell interaction tests such as the MTT assay, staining assay, and flow cytometry assay. The IC50 value of S-AgNPs against A549 cells was 30 μg ml−1, and Calcein-EtBr and Annexin V/PI staining results confirm the presence of apoptotic cells after treatment S-AgNPs. Hence, biosynthesized S-AgNPs can play a vital role in developing anticancer drugs for cancer treatment.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saponin-mediated and microwave-assisted biosynthesis of silver nanoparticles: preparations and anticancer assessment\",\"authors\":\"Sesha Subramanian Murugan, Pandurang Appana Dalavi, Pramod K Gupta, Won Hur, Ramkumar Pillappan, Jayachandran Venkatesan and Gi Hun Seong\",\"doi\":\"10.1088/2043-6262/ad71a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silver nanoparticles have been extensively studied and used for biological and biomedical applications due to its antimicrobial properties. In this study, we have developed silver nanoparticles with saponin (S-AgNPs) using microwave-mediated methodology and physiochemically characterised and evaluated its anticancer potential. According to UV–visible spectroscopy, S-AgNPs exhibited a maximum absorption peak at a wavelength of 420 nm. DLS analysis revealed that S-AgNPs have an average diameter of around 133.8 ± 10 nm. HR-TEM analysis confirms the spherical morphology of S-AgNPs. Further, the anticancer effect of S-AgNPs was validated using A459 lung cancer cells by in vitro cell interaction tests such as the MTT assay, staining assay, and flow cytometry assay. The IC50 value of S-AgNPs against A549 cells was 30 μg ml−1, and Calcein-EtBr and Annexin V/PI staining results confirm the presence of apoptotic cells after treatment S-AgNPs. Hence, biosynthesized S-AgNPs can play a vital role in developing anticancer drugs for cancer treatment.\",\"PeriodicalId\":7359,\"journal\":{\"name\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2043-6262/ad71a9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/ad71a9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

银纳米粒子因其抗菌特性而被广泛研究并用于生物和生物医学应用。在这项研究中,我们采用微波介导的方法开发了含皂苷(S-AgNPs)的银纳米粒子,并对其进行了生化表征和抗癌潜力评估。紫外可见光谱显示,S-AgNPs 在 420 纳米波长处有最大吸收峰。DLS 分析显示,S-AgNPs 的平均直径约为 133.8 ± 10 nm。HR-TEM 分析证实了 S-AgNPs 的球形形态。此外,还利用 A459 肺癌细胞,通过 MTT 试验、染色试验和流式细胞术试验等体外细胞相互作用试验验证了 S-AgNPs 的抗癌效果。S-AgNPs 对 A549 细胞的 IC50 值为 30 μg ml-1,而 Calcein-EtBr 和 Annexin V/PI 染色结果证实了 S-AgNPs 处理后细胞凋亡的存在。因此,生物合成的 S-AgNPs 可在开发抗癌药物治疗癌症方面发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Saponin-mediated and microwave-assisted biosynthesis of silver nanoparticles: preparations and anticancer assessment
Silver nanoparticles have been extensively studied and used for biological and biomedical applications due to its antimicrobial properties. In this study, we have developed silver nanoparticles with saponin (S-AgNPs) using microwave-mediated methodology and physiochemically characterised and evaluated its anticancer potential. According to UV–visible spectroscopy, S-AgNPs exhibited a maximum absorption peak at a wavelength of 420 nm. DLS analysis revealed that S-AgNPs have an average diameter of around 133.8 ± 10 nm. HR-TEM analysis confirms the spherical morphology of S-AgNPs. Further, the anticancer effect of S-AgNPs was validated using A459 lung cancer cells by in vitro cell interaction tests such as the MTT assay, staining assay, and flow cytometry assay. The IC50 value of S-AgNPs against A549 cells was 30 μg ml−1, and Calcein-EtBr and Annexin V/PI staining results confirm the presence of apoptotic cells after treatment S-AgNPs. Hence, biosynthesized S-AgNPs can play a vital role in developing anticancer drugs for cancer treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Natural Sciences: Nanoscience and Nanotechnology
Advances in Natural Sciences: Nanoscience and Nanotechnology NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
4.80%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信