D. V. Belov, S. N. Belyaev, O. A. Malshakova, N. A. Sorokoletova, E. I. Serebrov
{"title":"制备用于 KDP 晶体磁流变抛光的纳米研磨剂","authors":"D. V. Belov, S. N. Belyaev, O. A. Malshakova, N. A. Sorokoletova, E. I. Serebrov","doi":"10.1134/S1061933X24600477","DOIUrl":null,"url":null,"abstract":"<p>Magnetorheological polishing technology is widely used in the processing of high-precision optical elements. One of the determining factors in the magnetorheological polishing technology is the nature and quality of a nanoabrasive present in a magnetorheological suspension. In this study, a method has been developed for the sol–gel synthesis of amorphous silica nanospheres used as a nanoabrasive for magnetorheological polishing of water-soluble crystals used to manufacture nonlinear optical elements for laser technology. The practical success has been achieved by incorporating the synthesized silica nanoabrasive into a magnetorheological suspension. The physicochemical characteristics of the resulting nanoabrasive have been presented. Electron microscopy data have confirmed the spherical morphology of SiO<sub>2</sub> particles, and it has been found that the particle size distribution varies in a range of 40–60 nm, thus ensuring the uniformity and high quality of treating the surfaces of optical elements with the magnetorheological suspension. The structure-related properties of the SiO<sub>2</sub> nanoabrasive have been studied by X-ray powder diffraction. The incorporation of the SiO<sub>2</sub> nanoabrasive into the magnetorheological suspension has made it possible to achieve the high-quality processing and cleanliness of the surface, as well as to ensure the finishing polishing of the surface of KDP single crystals to roughness values of no more than 6 Å. The results of the work are of interest for optimizing the process and improving the technology of magnetorheological polishing.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Nanoabrasive for Magnetorheological Polishing of KDP Crystals\",\"authors\":\"D. V. Belov, S. N. Belyaev, O. A. Malshakova, N. A. Sorokoletova, E. I. Serebrov\",\"doi\":\"10.1134/S1061933X24600477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Magnetorheological polishing technology is widely used in the processing of high-precision optical elements. One of the determining factors in the magnetorheological polishing technology is the nature and quality of a nanoabrasive present in a magnetorheological suspension. In this study, a method has been developed for the sol–gel synthesis of amorphous silica nanospheres used as a nanoabrasive for magnetorheological polishing of water-soluble crystals used to manufacture nonlinear optical elements for laser technology. The practical success has been achieved by incorporating the synthesized silica nanoabrasive into a magnetorheological suspension. The physicochemical characteristics of the resulting nanoabrasive have been presented. Electron microscopy data have confirmed the spherical morphology of SiO<sub>2</sub> particles, and it has been found that the particle size distribution varies in a range of 40–60 nm, thus ensuring the uniformity and high quality of treating the surfaces of optical elements with the magnetorheological suspension. The structure-related properties of the SiO<sub>2</sub> nanoabrasive have been studied by X-ray powder diffraction. The incorporation of the SiO<sub>2</sub> nanoabrasive into the magnetorheological suspension has made it possible to achieve the high-quality processing and cleanliness of the surface, as well as to ensure the finishing polishing of the surface of KDP single crystals to roughness values of no more than 6 Å. The results of the work are of interest for optimizing the process and improving the technology of magnetorheological polishing.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X24600477\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X24600477","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 磁流变抛光技术广泛应用于高精度光学元件的加工。磁流变抛光技术的决定因素之一是磁流变悬浮液中纳米研磨剂的性质和质量。本研究开发了一种溶胶-凝胶合成无定形二氧化硅纳米球的方法,这种纳米球可用作纳米研磨剂,对用于制造激光技术非线性光学元件的水溶性晶体进行磁流变抛光。通过将合成的二氧化硅纳米研磨剂加入磁流变悬浮液中,取得了实际成功。研究人员介绍了纳米研磨剂的物理化学特性。电子显微镜数据证实了二氧化硅颗粒的球形形态,并发现粒度分布在 40-60 纳米范围内,从而确保了磁流变悬浮液处理光学元件表面的均匀性和高质量。通过 X 射线粉末衍射研究了二氧化硅纳米研磨剂的结构相关特性。在磁流变悬浮液中加入二氧化硅纳米研磨剂,可以实现高质量的表面处理和清洁,并确保对 KDP 单晶表面进行精抛光,使其粗糙度值不超过 6 Å。
Preparation of Nanoabrasive for Magnetorheological Polishing of KDP Crystals
Magnetorheological polishing technology is widely used in the processing of high-precision optical elements. One of the determining factors in the magnetorheological polishing technology is the nature and quality of a nanoabrasive present in a magnetorheological suspension. In this study, a method has been developed for the sol–gel synthesis of amorphous silica nanospheres used as a nanoabrasive for magnetorheological polishing of water-soluble crystals used to manufacture nonlinear optical elements for laser technology. The practical success has been achieved by incorporating the synthesized silica nanoabrasive into a magnetorheological suspension. The physicochemical characteristics of the resulting nanoabrasive have been presented. Electron microscopy data have confirmed the spherical morphology of SiO2 particles, and it has been found that the particle size distribution varies in a range of 40–60 nm, thus ensuring the uniformity and high quality of treating the surfaces of optical elements with the magnetorheological suspension. The structure-related properties of the SiO2 nanoabrasive have been studied by X-ray powder diffraction. The incorporation of the SiO2 nanoabrasive into the magnetorheological suspension has made it possible to achieve the high-quality processing and cleanliness of the surface, as well as to ensure the finishing polishing of the surface of KDP single crystals to roughness values of no more than 6 Å. The results of the work are of interest for optimizing the process and improving the technology of magnetorheological polishing.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.