{"title":"离子立体效应和离子分区效应影响下填充了幂律流体的软纳米通道的电渗流调制","authors":"Amit Malick, Bhanuman Barman","doi":"10.1134/S1061933X24600222","DOIUrl":null,"url":null,"abstract":"<p>The present article deals with the modulation of electroosmotic flow (EOF) and transport of ionic species within soft nanochannels. The power-law model is adopted to consider the non-Newtonian nature of bulk electrolyte. The soft layer grafted along the rigid walls often bears ionizable functional groups, which in turn leads to the net volumetric charge. Besides, the dielectric permittivity of the soft layer is in general lower than that of the ambient electrolyte solution, which in turn leads to ion partitioning effect. The net volumetric charge within the soft polymeric layer coated along the channel walls may be moderate to large. For such a case, the ion steric effect may play a pivotal role on the modulation of electrostatic potential and thereby the flow field across the channel. In the present article, we aim to study the flow modulation across the soft nanochannels considering all such intrinsic effects. The mathematical model is based on modified Poisson−Boltzmann equations based on Carnahan−Striling model, Cauchy momentum equation for flow field. The governing equations are solved via a suitable numerical scheme based on finite difference method to calculate the electrostatic potential as well as flow velocity. We further analyze the impact of pertinent parameters on the flow modulation and ion selectivity parameter.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electroosmotic Flow Modulation through Soft Nanochannel Filled with Power-law Fluid under Impacts of Ion Steric and Ion Partitioning Effects\",\"authors\":\"Amit Malick, Bhanuman Barman\",\"doi\":\"10.1134/S1061933X24600222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present article deals with the modulation of electroosmotic flow (EOF) and transport of ionic species within soft nanochannels. The power-law model is adopted to consider the non-Newtonian nature of bulk electrolyte. The soft layer grafted along the rigid walls often bears ionizable functional groups, which in turn leads to the net volumetric charge. Besides, the dielectric permittivity of the soft layer is in general lower than that of the ambient electrolyte solution, which in turn leads to ion partitioning effect. The net volumetric charge within the soft polymeric layer coated along the channel walls may be moderate to large. For such a case, the ion steric effect may play a pivotal role on the modulation of electrostatic potential and thereby the flow field across the channel. In the present article, we aim to study the flow modulation across the soft nanochannels considering all such intrinsic effects. The mathematical model is based on modified Poisson−Boltzmann equations based on Carnahan−Striling model, Cauchy momentum equation for flow field. The governing equations are solved via a suitable numerical scheme based on finite difference method to calculate the electrostatic potential as well as flow velocity. We further analyze the impact of pertinent parameters on the flow modulation and ion selectivity parameter.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X24600222\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X24600222","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electroosmotic Flow Modulation through Soft Nanochannel Filled with Power-law Fluid under Impacts of Ion Steric and Ion Partitioning Effects
The present article deals with the modulation of electroosmotic flow (EOF) and transport of ionic species within soft nanochannels. The power-law model is adopted to consider the non-Newtonian nature of bulk electrolyte. The soft layer grafted along the rigid walls often bears ionizable functional groups, which in turn leads to the net volumetric charge. Besides, the dielectric permittivity of the soft layer is in general lower than that of the ambient electrolyte solution, which in turn leads to ion partitioning effect. The net volumetric charge within the soft polymeric layer coated along the channel walls may be moderate to large. For such a case, the ion steric effect may play a pivotal role on the modulation of electrostatic potential and thereby the flow field across the channel. In the present article, we aim to study the flow modulation across the soft nanochannels considering all such intrinsic effects. The mathematical model is based on modified Poisson−Boltzmann equations based on Carnahan−Striling model, Cauchy momentum equation for flow field. The governing equations are solved via a suitable numerical scheme based on finite difference method to calculate the electrostatic potential as well as flow velocity. We further analyze the impact of pertinent parameters on the flow modulation and ion selectivity parameter.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.