具有鹿目晶格的拓扑量子材料

Qi Wang, Hechang Lei, Yanpeng Qi, Claudia Felser
{"title":"具有鹿目晶格的拓扑量子材料","authors":"Qi Wang, Hechang Lei, Yanpeng Qi, Claudia Felser","doi":"arxiv-2409.04211","DOIUrl":null,"url":null,"abstract":"In this account, we will give an overview of our research progress on novel\nquantum properties in topological quantum materials with kagome lattice. Here,\nthere are mainly two categories of kagome materials: magnetic kagome materials\nand nonmagnetic ones. On one hand, magnetic kagome materials mainly focus on\nthe 3d transition-metal-based kagome systems, including Fe$_3$Sn$_2$,\nCo$_3$Sn$_2$S$_2$, YMn6Sn6, FeSn, and CoSn. The interplay between magnetism and\ntopological bands manifests vital influence on the electronic response. For\nexample, the existence of massive Dirac or Weyl fermions near the Fermi level\nsignicantly enhances the magnitude of Berry curvature in momentum space,\nleading to a large intrinsic anomalous Hall effect. In addition, the peculiar\nfrustrated structure of kagome materials enables them to host a topologically\nprotected skyrmion lattice or noncoplaner spin texture, yielding a topological\nHall effect that arises from the realspace Berry phase. On the other hand,\nnonmagnetic kagome materials in the absence of longrange magnetic order include\nCsV3Sb5 with the coexistence of superconductivity, charge density wave state,\nand band topology and van der Waals semiconductor Pd$_3$P$_2$S$_8$. For these\ntwo kagome materials, the tunability of electric response in terms of high\npressure or carrier doping helps to reveal the interplay between electronic\ncorrelation effects and band topology and discover the novel emergent quantum\nphenomena in kagome materials.","PeriodicalId":501069,"journal":{"name":"arXiv - PHYS - Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Quantum Materials with Kagome Lattice\",\"authors\":\"Qi Wang, Hechang Lei, Yanpeng Qi, Claudia Felser\",\"doi\":\"arxiv-2409.04211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this account, we will give an overview of our research progress on novel\\nquantum properties in topological quantum materials with kagome lattice. Here,\\nthere are mainly two categories of kagome materials: magnetic kagome materials\\nand nonmagnetic ones. On one hand, magnetic kagome materials mainly focus on\\nthe 3d transition-metal-based kagome systems, including Fe$_3$Sn$_2$,\\nCo$_3$Sn$_2$S$_2$, YMn6Sn6, FeSn, and CoSn. The interplay between magnetism and\\ntopological bands manifests vital influence on the electronic response. For\\nexample, the existence of massive Dirac or Weyl fermions near the Fermi level\\nsignicantly enhances the magnitude of Berry curvature in momentum space,\\nleading to a large intrinsic anomalous Hall effect. In addition, the peculiar\\nfrustrated structure of kagome materials enables them to host a topologically\\nprotected skyrmion lattice or noncoplaner spin texture, yielding a topological\\nHall effect that arises from the realspace Berry phase. On the other hand,\\nnonmagnetic kagome materials in the absence of longrange magnetic order include\\nCsV3Sb5 with the coexistence of superconductivity, charge density wave state,\\nand band topology and van der Waals semiconductor Pd$_3$P$_2$S$_8$. For these\\ntwo kagome materials, the tunability of electric response in terms of high\\npressure or carrier doping helps to reveal the interplay between electronic\\ncorrelation effects and band topology and discover the novel emergent quantum\\nphenomena in kagome materials.\",\"PeriodicalId\":501069,\"journal\":{\"name\":\"arXiv - PHYS - Superconductivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Superconductivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本报告中,我们将概述我们在具有可果美晶格的拓扑量子材料的新量子特性方面的研究进展。这里的卡戈米材料主要分为两类:磁性卡戈米材料和非磁性卡戈米材料。一方面,磁性 kagome 材料主要集中在基于三维过渡金属的 kagome 体系,包括 Fe$_3$Sn$_2$、Co$_3$Sn$_2$S$_2$、YMn6Sn6、FeSn 和 CoSn。磁性和拓扑带之间的相互作用对电子响应有着至关重要的影响。例如,费米级附近大质量狄拉克费米子或韦尔费米子的存在明显增强了动量空间中贝里曲率的大小,从而导致了巨大的内在反常霍尔效应。此外,卡戈米材料奇特的受挫结构使它们能够承载拓扑保护的天磁晶格或非共面自旋纹理,产生源于真实空间贝里相的拓扑霍尔效应。另一方面,无长程磁序的非磁性 kagome 材料包括超导性、电荷密度波态和带拓扑共存的 CsV3Sb5 以及范德华半导体 Pd$_3$P$_2$S$_8$。对于这两种卡戈米材料,高压或载流子掺杂对电响应的可调谐性有助于揭示电子相关效应与能带拓扑之间的相互作用,并发现卡戈米材料中新出现的量子现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological Quantum Materials with Kagome Lattice
In this account, we will give an overview of our research progress on novel quantum properties in topological quantum materials with kagome lattice. Here, there are mainly two categories of kagome materials: magnetic kagome materials and nonmagnetic ones. On one hand, magnetic kagome materials mainly focus on the 3d transition-metal-based kagome systems, including Fe$_3$Sn$_2$, Co$_3$Sn$_2$S$_2$, YMn6Sn6, FeSn, and CoSn. The interplay between magnetism and topological bands manifests vital influence on the electronic response. For example, the existence of massive Dirac or Weyl fermions near the Fermi level signicantly enhances the magnitude of Berry curvature in momentum space, leading to a large intrinsic anomalous Hall effect. In addition, the peculiar frustrated structure of kagome materials enables them to host a topologically protected skyrmion lattice or noncoplaner spin texture, yielding a topological Hall effect that arises from the realspace Berry phase. On the other hand, nonmagnetic kagome materials in the absence of longrange magnetic order include CsV3Sb5 with the coexistence of superconductivity, charge density wave state, and band topology and van der Waals semiconductor Pd$_3$P$_2$S$_8$. For these two kagome materials, the tunability of electric response in terms of high pressure or carrier doping helps to reveal the interplay between electronic correlation effects and band topology and discover the novel emergent quantum phenomena in kagome materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信