Iñigo Robredo, Niels B. M. Schröter, Claudia Felser, Jennifer Cano, Barry Bradlyn and Maia G. Vergniory
{"title":"多元拓扑半金属","authors":"Iñigo Robredo, Niels B. M. Schröter, Claudia Felser, Jennifer Cano, Barry Bradlyn and Maia G. Vergniory","doi":"10.1209/0295-5075/ad6bbc","DOIUrl":null,"url":null,"abstract":"The discovery of topological semimetals with multifold band crossings has opened up a new and exciting frontier in the field of topological physics. These materials exhibit large Chern numbers, leading to long double Fermi arcs on their surfaces, which are protected by either crystal symmetries or topological order. The impact of these multifold crossings extends beyond surface science, as they are not constrained by the Poincar classification of quasiparticles and only need to respect the crystal symmetry of one of the 1651 magnetic space groups. Consequently, we observe the emergence of free fermionic excitations in solid-state systems that have no high-energy counterparts, protected by non-symmorphic symmetries. In this work, we review the recent theoretical and experimental progress made in the field of multifold topological semimetals. We begin with the theoretical prediction of the so-called multifold fermions and discuss the subsequent discoveries of chiral and magnetic topological semimetals. Several experiments that have realized chiral semimetals in spectroscopic measurements are described, and we discuss the future prospects of this field. These exciting developments have the potential to deepen our understanding of the fundamental properties of quantum matter and inspire new technological applications in the future.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"48 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifold topological semimetals\",\"authors\":\"Iñigo Robredo, Niels B. M. Schröter, Claudia Felser, Jennifer Cano, Barry Bradlyn and Maia G. Vergniory\",\"doi\":\"10.1209/0295-5075/ad6bbc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of topological semimetals with multifold band crossings has opened up a new and exciting frontier in the field of topological physics. These materials exhibit large Chern numbers, leading to long double Fermi arcs on their surfaces, which are protected by either crystal symmetries or topological order. The impact of these multifold crossings extends beyond surface science, as they are not constrained by the Poincar classification of quasiparticles and only need to respect the crystal symmetry of one of the 1651 magnetic space groups. Consequently, we observe the emergence of free fermionic excitations in solid-state systems that have no high-energy counterparts, protected by non-symmorphic symmetries. In this work, we review the recent theoretical and experimental progress made in the field of multifold topological semimetals. We begin with the theoretical prediction of the so-called multifold fermions and discuss the subsequent discoveries of chiral and magnetic topological semimetals. Several experiments that have realized chiral semimetals in spectroscopic measurements are described, and we discuss the future prospects of this field. These exciting developments have the potential to deepen our understanding of the fundamental properties of quantum matter and inspire new technological applications in the future.\",\"PeriodicalId\":11738,\"journal\":{\"name\":\"EPL\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/ad6bbc\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad6bbc","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The discovery of topological semimetals with multifold band crossings has opened up a new and exciting frontier in the field of topological physics. These materials exhibit large Chern numbers, leading to long double Fermi arcs on their surfaces, which are protected by either crystal symmetries or topological order. The impact of these multifold crossings extends beyond surface science, as they are not constrained by the Poincar classification of quasiparticles and only need to respect the crystal symmetry of one of the 1651 magnetic space groups. Consequently, we observe the emergence of free fermionic excitations in solid-state systems that have no high-energy counterparts, protected by non-symmorphic symmetries. In this work, we review the recent theoretical and experimental progress made in the field of multifold topological semimetals. We begin with the theoretical prediction of the so-called multifold fermions and discuss the subsequent discoveries of chiral and magnetic topological semimetals. Several experiments that have realized chiral semimetals in spectroscopic measurements are described, and we discuss the future prospects of this field. These exciting developments have the potential to deepen our understanding of the fundamental properties of quantum matter and inspire new technological applications in the future.
期刊介绍:
General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology.
Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate).
EPL also publishes Comments on Letters previously published in the Journal.