{"title":"通过边界近似理论解决光谱问题","authors":"Lingxiao Long and Yunguo Jiang","doi":"10.1209/0295-5075/ad6eb5","DOIUrl":null,"url":null,"abstract":"In theory, the resonance scattering structure is triggered by the so-called delocalized modes trapped between the pair. The frequencies and configurations of such modes depend on the half-separation a, which can be derived from the Schrödinger-like equation. We propose to use the boundary conditions to connect the half-localized and delocalized modes, and use boundary approximation (BA) to solve the spectrum analytically. In detail, we derive the explicit form of frequencies, configurations and spectral wall locations of the delocalized modes. We test the analytical prediction with the numerical simulation of the Schrödinger-like equation, and obtain astonishing agreement between them at the long separation regime.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"21 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the spectral problem via the boundary approximation in theory\",\"authors\":\"Lingxiao Long and Yunguo Jiang\",\"doi\":\"10.1209/0295-5075/ad6eb5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In theory, the resonance scattering structure is triggered by the so-called delocalized modes trapped between the pair. The frequencies and configurations of such modes depend on the half-separation a, which can be derived from the Schrödinger-like equation. We propose to use the boundary conditions to connect the half-localized and delocalized modes, and use boundary approximation (BA) to solve the spectrum analytically. In detail, we derive the explicit form of frequencies, configurations and spectral wall locations of the delocalized modes. We test the analytical prediction with the numerical simulation of the Schrödinger-like equation, and obtain astonishing agreement between them at the long separation regime.\",\"PeriodicalId\":11738,\"journal\":{\"name\":\"EPL\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/ad6eb5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad6eb5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Solving the spectral problem via the boundary approximation in theory
In theory, the resonance scattering structure is triggered by the so-called delocalized modes trapped between the pair. The frequencies and configurations of such modes depend on the half-separation a, which can be derived from the Schrödinger-like equation. We propose to use the boundary conditions to connect the half-localized and delocalized modes, and use boundary approximation (BA) to solve the spectrum analytically. In detail, we derive the explicit form of frequencies, configurations and spectral wall locations of the delocalized modes. We test the analytical prediction with the numerical simulation of the Schrödinger-like equation, and obtain astonishing agreement between them at the long separation regime.
期刊介绍:
General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology.
Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate).
EPL also publishes Comments on Letters previously published in the Journal.