多种酒精摄入量的非线性模型和最佳设计策略

IF 2.3 4区 化学 Q1 SOCIAL WORK
Irene Mariñas‐Collado, Juan M. Rodríguez‐Díaz, M. Teresa Santos‐Martín
{"title":"多种酒精摄入量的非线性模型和最佳设计策略","authors":"Irene Mariñas‐Collado, Juan M. Rodríguez‐Díaz, M. Teresa Santos‐Martín","doi":"10.1002/cem.3599","DOIUrl":null,"url":null,"abstract":"This study addresses the complex dynamics of alcohol elimination in the human body, very important in forensic and healthcare areas. Existing models often oversimplify with the assumption of linear elimination kinetics, limiting practical application. This study presents a novel non‐linear model for estimating blood alcohol concentration after multiple intakes. Initially developed for two different alcohol incorporations, it can be straightforwardly extended to the case of more intakes. Emphasising the significance of accurate parameter estimation, the research underscores the importance of precise experimental design, utilising optimal experimental design (OED) methodologies. Sensitivity analysis of model coefficients and the determination of D‐optimal designs, considering correlation structures among observations, reveal a strong linear relationship between support points. This relationship can be used to obtain nearly optimal designs that are highly efficient and much easier to compute.","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Non‐Linear Model for Multiple Alcohol Intakes and Optimal Designs Strategies\",\"authors\":\"Irene Mariñas‐Collado, Juan M. Rodríguez‐Díaz, M. Teresa Santos‐Martín\",\"doi\":\"10.1002/cem.3599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study addresses the complex dynamics of alcohol elimination in the human body, very important in forensic and healthcare areas. Existing models often oversimplify with the assumption of linear elimination kinetics, limiting practical application. This study presents a novel non‐linear model for estimating blood alcohol concentration after multiple intakes. Initially developed for two different alcohol incorporations, it can be straightforwardly extended to the case of more intakes. Emphasising the significance of accurate parameter estimation, the research underscores the importance of precise experimental design, utilising optimal experimental design (OED) methodologies. Sensitivity analysis of model coefficients and the determination of D‐optimal designs, considering correlation structures among observations, reveal a strong linear relationship between support points. This relationship can be used to obtain nearly optimal designs that are highly efficient and much easier to compute.\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cem.3599\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cem.3599","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

摘要

这项研究探讨了酒精在人体内消除的复杂动态,这在法医和医疗保健领域非常重要。现有的模型往往过于简化,假定其为线性消除动力学,从而限制了实际应用。本研究提出了一种新的非线性模型,用于估计多次摄入后血液中的酒精浓度。该模型最初是针对两种不同的酒精摄入量而开发的,可以直接扩展到更多摄入量的情况。研究强调了精确参数估计的重要性,并强调了利用最优实验设计(OED)方法进行精确实验设计的重要性。对模型系数的敏感性分析和 D-最优设计的确定,考虑到了观测数据之间的相关结构,揭示了支持点之间强烈的线性关系。利用这种关系可以获得近乎最优的设计,这种设计效率高,而且更容易计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Non‐Linear Model for Multiple Alcohol Intakes and Optimal Designs Strategies
This study addresses the complex dynamics of alcohol elimination in the human body, very important in forensic and healthcare areas. Existing models often oversimplify with the assumption of linear elimination kinetics, limiting practical application. This study presents a novel non‐linear model for estimating blood alcohol concentration after multiple intakes. Initially developed for two different alcohol incorporations, it can be straightforwardly extended to the case of more intakes. Emphasising the significance of accurate parameter estimation, the research underscores the importance of precise experimental design, utilising optimal experimental design (OED) methodologies. Sensitivity analysis of model coefficients and the determination of D‐optimal designs, considering correlation structures among observations, reveal a strong linear relationship between support points. This relationship can be used to obtain nearly optimal designs that are highly efficient and much easier to compute.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信