{"title":"带有置换测试的 ASCA 人口功率曲线","authors":"José Camacho, Michael Sorochan Armstrong","doi":"10.1002/cem.3596","DOIUrl":null,"url":null,"abstract":"In this paper, we revisit the power curves in ANOVA simultaneous component analysis (ASCA) based on permutation testing and introduce the population curves derived from population parameters describing the relative effect among factors and interactions. The relative effect has important practical implications: The statistical power of a given factor depends on the design of other factors in the experiment and not only of the sample size. Thus, understanding the relative power in a specific experimental design can be extremely useful to maximize our capability of success when planning the experiment. In the paper, we derive relative and absolute population curves, where the former represent statistical power in terms of the normalized effect size between structure and noise, and the latter in terms of the sample size. Both types of population curves allow us to make decisions regarding the number and nature (fixed/random) of factors, their relationships (crossed/nested), and the number of levels and replicates, among others, in an multivariate experimental design (e.g., an omics study) during the planning phase of the experiment. We illustrate both types of curves through simulation.","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"58 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Population Power Curves in ASCA With Permutation Testing\",\"authors\":\"José Camacho, Michael Sorochan Armstrong\",\"doi\":\"10.1002/cem.3596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we revisit the power curves in ANOVA simultaneous component analysis (ASCA) based on permutation testing and introduce the population curves derived from population parameters describing the relative effect among factors and interactions. The relative effect has important practical implications: The statistical power of a given factor depends on the design of other factors in the experiment and not only of the sample size. Thus, understanding the relative power in a specific experimental design can be extremely useful to maximize our capability of success when planning the experiment. In the paper, we derive relative and absolute population curves, where the former represent statistical power in terms of the normalized effect size between structure and noise, and the latter in terms of the sample size. Both types of population curves allow us to make decisions regarding the number and nature (fixed/random) of factors, their relationships (crossed/nested), and the number of levels and replicates, among others, in an multivariate experimental design (e.g., an omics study) during the planning phase of the experiment. We illustrate both types of curves through simulation.\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cem.3596\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cem.3596","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
Population Power Curves in ASCA With Permutation Testing
In this paper, we revisit the power curves in ANOVA simultaneous component analysis (ASCA) based on permutation testing and introduce the population curves derived from population parameters describing the relative effect among factors and interactions. The relative effect has important practical implications: The statistical power of a given factor depends on the design of other factors in the experiment and not only of the sample size. Thus, understanding the relative power in a specific experimental design can be extremely useful to maximize our capability of success when planning the experiment. In the paper, we derive relative and absolute population curves, where the former represent statistical power in terms of the normalized effect size between structure and noise, and the latter in terms of the sample size. Both types of population curves allow us to make decisions regarding the number and nature (fixed/random) of factors, their relationships (crossed/nested), and the number of levels and replicates, among others, in an multivariate experimental design (e.g., an omics study) during the planning phase of the experiment. We illustrate both types of curves through simulation.
期刊介绍:
The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.