通过时空采样进行离散动态系统中的周期源检测

Akram Aldroubi, Carlos Cabrelli, Ursula Molter
{"title":"通过时空采样进行离散动态系统中的周期源检测","authors":"Akram Aldroubi, Carlos Cabrelli, Ursula Molter","doi":"arxiv-2408.06934","DOIUrl":null,"url":null,"abstract":"In this paper, we examine a discrete dynamical system defined by x(n+1) =\nAx(n)+ w(n), where x takes values in a Hilbert space H and w is a periodic\nsource with values in a fixed closed subspace W of H. Our goal is to identify\nconditions on some spatial sampling system G = {gj: j in J} of H that enable\nstable recovery of the unknown source term w from space-time samples\n{<x(n),g_j>: n >=0,j in J}. We provide necessary and sufficient conditions on G\n= {g_j }_{j in J} to ensure stable recovery of any w in W . Additionally, we\nexplicitly construct an operator R, dependent on G, such that\nR{<x(n),g_j>}_n,j} = w.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic Source Detection in Discrete Dynamical Systems via space-time sampling\",\"authors\":\"Akram Aldroubi, Carlos Cabrelli, Ursula Molter\",\"doi\":\"arxiv-2408.06934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we examine a discrete dynamical system defined by x(n+1) =\\nAx(n)+ w(n), where x takes values in a Hilbert space H and w is a periodic\\nsource with values in a fixed closed subspace W of H. Our goal is to identify\\nconditions on some spatial sampling system G = {gj: j in J} of H that enable\\nstable recovery of the unknown source term w from space-time samples\\n{<x(n),g_j>: n >=0,j in J}. We provide necessary and sufficient conditions on G\\n= {g_j }_{j in J} to ensure stable recovery of any w in W . Additionally, we\\nexplicitly construct an operator R, dependent on G, such that\\nR{<x(n),g_j>}_n,j} = w.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个离散动力系统,其定义为 x(n+1) =Ax(n)+ w(n),其中 x 取值于希尔伯特空间 H,而 w 是一个周期源,其值位于 H 的一个固定闭合子空间 W 中。我们的目标是确定 H 的某个空间采样系统 G = {gj: J 中的 j} 上的条件,以便能够从时空采样{: n >=0,J 中的 j}中恢复未知源项 w。我们提供了 G= {g_j }_{j in J} 的必要条件和充分条件,以确保稳定恢复 W 中的任何 w。此外,我们还明确构建了一个依赖于 G 的算子 R,使得 R{}_n,j} = w。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic Source Detection in Discrete Dynamical Systems via space-time sampling
In this paper, we examine a discrete dynamical system defined by x(n+1) = Ax(n)+ w(n), where x takes values in a Hilbert space H and w is a periodic source with values in a fixed closed subspace W of H. Our goal is to identify conditions on some spatial sampling system G = {gj: j in J} of H that enable stable recovery of the unknown source term w from space-time samples {: n >=0,j in J}. We provide necessary and sufficient conditions on G = {g_j }_{j in J} to ensure stable recovery of any w in W . Additionally, we explicitly construct an operator R, dependent on G, such that R{}_n,j} = w.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信