拉格朗日格拉斯曼$LG(2,4)$的精炼杜布罗文猜想证明

Fangze Sheng
{"title":"拉格朗日格拉斯曼$LG(2,4)$的精炼杜布罗文猜想证明","authors":"Fangze Sheng","doi":"arxiv-2409.03590","DOIUrl":null,"url":null,"abstract":"The Dubrovin conjecture predicts a relationship between the monodromy data of\nthe Frobenius manifold associated to the quantum cohomology of a smooth\nprojective variety and the bounded derived category of the same variety. A\nrefinement of this conjecture was given by Cotti, Dubrovin and Guzzetti, which\nis equivalent to the Gamma conjecture II proposed by Galkin, Golyshev and\nIritani. The Gamma conjecture II for quadrics was proved by Hu and Ke. The\nLagrangian Grassmanian $LG(2,4)$ is isomorphic to the quadric in $\\mathbb P^4$.\nIn this paper, we give a new proof of the refined Dubrovin conjecture for the\nLagrangian Grassmanian $LG(2,4)$ by explicit computation.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of the refined Dubrovin conjecture for the Lagrangian Grassmanian $LG(2,4)$\",\"authors\":\"Fangze Sheng\",\"doi\":\"arxiv-2409.03590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Dubrovin conjecture predicts a relationship between the monodromy data of\\nthe Frobenius manifold associated to the quantum cohomology of a smooth\\nprojective variety and the bounded derived category of the same variety. A\\nrefinement of this conjecture was given by Cotti, Dubrovin and Guzzetti, which\\nis equivalent to the Gamma conjecture II proposed by Galkin, Golyshev and\\nIritani. The Gamma conjecture II for quadrics was proved by Hu and Ke. The\\nLagrangian Grassmanian $LG(2,4)$ is isomorphic to the quadric in $\\\\mathbb P^4$.\\nIn this paper, we give a new proof of the refined Dubrovin conjecture for the\\nLagrangian Grassmanian $LG(2,4)$ by explicit computation.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

杜布罗文猜想预言了与光滑投影变分的量子同调相关的弗罗贝尼斯流形的单色数据与同一变分的有界派生范畴之间的关系。科蒂、杜布罗文和古泽蒂给出了这一猜想的定义,它等同于加尔金、戈利舍夫和伊利塔尼提出的伽马猜想 II。胡和柯证明了四面体的伽马猜想 II。本文通过显式计算给出了拉格朗日格拉斯曼$LG(2,4)$与$\mathbb P^4$中的四元数同构的新证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of the refined Dubrovin conjecture for the Lagrangian Grassmanian $LG(2,4)$
The Dubrovin conjecture predicts a relationship between the monodromy data of the Frobenius manifold associated to the quantum cohomology of a smooth projective variety and the bounded derived category of the same variety. A refinement of this conjecture was given by Cotti, Dubrovin and Guzzetti, which is equivalent to the Gamma conjecture II proposed by Galkin, Golyshev and Iritani. The Gamma conjecture II for quadrics was proved by Hu and Ke. The Lagrangian Grassmanian $LG(2,4)$ is isomorphic to the quadric in $\mathbb P^4$. In this paper, we give a new proof of the refined Dubrovin conjecture for the Lagrangian Grassmanian $LG(2,4)$ by explicit computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信