在 $0le x \le 1$ 的区间内对 $x^m (-\log x)^l$ 进行切比雪夫近似计算

Richard J. Mathar
{"title":"在 $0le x \\le 1$ 的区间内对 $x^m (-\\log x)^l$ 进行切比雪夫近似计算","authors":"Richard J. Mathar","doi":"arxiv-2408.15212","DOIUrl":null,"url":null,"abstract":"The series expansion of $x^m (-\\log x)^l$ in terms of the shifted Chebyshev\nPolynomials $T_n^*(x)$ requires evaluation of the integral family $\\int_0^1 x^m\n(-\\log x)^l dx / \\sqrt{x-x^2}$. We demonstrate that these can be reduced by\npartial integration to sums over integrals with exponent $m=0$ which have known\nrepresentations as finite sums over polygamma functions.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chebyshev approximation of $x^m (-\\\\log x)^l$ in the interval $0\\\\le x \\\\le 1$\",\"authors\":\"Richard J. Mathar\",\"doi\":\"arxiv-2408.15212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The series expansion of $x^m (-\\\\log x)^l$ in terms of the shifted Chebyshev\\nPolynomials $T_n^*(x)$ requires evaluation of the integral family $\\\\int_0^1 x^m\\n(-\\\\log x)^l dx / \\\\sqrt{x-x^2}$. We demonstrate that these can be reduced by\\npartial integration to sums over integrals with exponent $m=0$ which have known\\nrepresentations as finite sums over polygamma functions.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用移位切比雪夫多项式 $T_n^*(x)$ 对 $x^m (-\log x)^l$ 进行级数展开需要对积分族 $\int_0^1 x^m(-\log x)^l dx / \sqrt{x-x^2}$进行求值。我们证明可以通过部分积分将其简化为指数为 $m=0$ 的积分之和,这些积分具有已知的多伽马函数有限和的表示形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chebyshev approximation of $x^m (-\log x)^l$ in the interval $0\le x \le 1$
The series expansion of $x^m (-\log x)^l$ in terms of the shifted Chebyshev Polynomials $T_n^*(x)$ requires evaluation of the integral family $\int_0^1 x^m (-\log x)^l dx / \sqrt{x-x^2}$. We demonstrate that these can be reduced by partial integration to sums over integrals with exponent $m=0$ which have known representations as finite sums over polygamma functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信