{"title":"一般傅里叶积分算子的端点正则性","authors":"Xiangrong Zhu, Wenjuan Li","doi":"arxiv-2408.15280","DOIUrl":null,"url":null,"abstract":"Let $n\\geq 1,0<\\rho<1, \\max\\{\\rho,1-\\rho\\}\\leq \\delta\\leq 1$ and\n$$m_1=\\rho-n+(n-1)\\min\\{\\frac 12,\\rho\\}+\\frac {1-\\delta}{2}.$$ If the amplitude\n$a$ belongs to the H\\\"{o}rmander class $S^{m_1}_{\\rho,\\delta}$ and $\\phi\\in\n\\Phi^{2}$ satisfies the strong non-degeneracy condition, then we prove that the\nfollowing Fourier integral operator $T_{\\phi,a}$ defined by \\begin{align*}\nT_{\\phi,a}f(x)=\\int_{\\mathbb{R}^{n}}e^{i\\phi(x,\\xi)}a(x,\\xi)\\widehat{f}(\\xi)d\\xi,\n\\end{align*} is bounded from the local Hardy space $h^1(\\mathbb{R}^n)$ to\n$L^1(\\mathbb{R}^n)$. As a corollary, we can also obtain the corresponding\n$L^p(\\mathbb{R}^n)$-boundedness when $1<p<2$. These theorems are rigorous improvements on the recent works of Staubach and\nhis collaborators. When $0\\leq \\rho\\leq 1,\\delta\\leq \\max\\{\\rho,1-\\rho\\}$, by\nusing some similar techniques in this note, we can get the corresponding\ntheorems which coincide with the known results.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endpoint regularity of general Fourier integral operators\",\"authors\":\"Xiangrong Zhu, Wenjuan Li\",\"doi\":\"arxiv-2408.15280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $n\\\\geq 1,0<\\\\rho<1, \\\\max\\\\{\\\\rho,1-\\\\rho\\\\}\\\\leq \\\\delta\\\\leq 1$ and\\n$$m_1=\\\\rho-n+(n-1)\\\\min\\\\{\\\\frac 12,\\\\rho\\\\}+\\\\frac {1-\\\\delta}{2}.$$ If the amplitude\\n$a$ belongs to the H\\\\\\\"{o}rmander class $S^{m_1}_{\\\\rho,\\\\delta}$ and $\\\\phi\\\\in\\n\\\\Phi^{2}$ satisfies the strong non-degeneracy condition, then we prove that the\\nfollowing Fourier integral operator $T_{\\\\phi,a}$ defined by \\\\begin{align*}\\nT_{\\\\phi,a}f(x)=\\\\int_{\\\\mathbb{R}^{n}}e^{i\\\\phi(x,\\\\xi)}a(x,\\\\xi)\\\\widehat{f}(\\\\xi)d\\\\xi,\\n\\\\end{align*} is bounded from the local Hardy space $h^1(\\\\mathbb{R}^n)$ to\\n$L^1(\\\\mathbb{R}^n)$. As a corollary, we can also obtain the corresponding\\n$L^p(\\\\mathbb{R}^n)$-boundedness when $1<p<2$. These theorems are rigorous improvements on the recent works of Staubach and\\nhis collaborators. When $0\\\\leq \\\\rho\\\\leq 1,\\\\delta\\\\leq \\\\max\\\\{\\\\rho,1-\\\\rho\\\\}$, by\\nusing some similar techniques in this note, we can get the corresponding\\ntheorems which coincide with the known results.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Endpoint regularity of general Fourier integral operators
Let $n\geq 1,0<\rho<1, \max\{\rho,1-\rho\}\leq \delta\leq 1$ and
$$m_1=\rho-n+(n-1)\min\{\frac 12,\rho\}+\frac {1-\delta}{2}.$$ If the amplitude
$a$ belongs to the H\"{o}rmander class $S^{m_1}_{\rho,\delta}$ and $\phi\in
\Phi^{2}$ satisfies the strong non-degeneracy condition, then we prove that the
following Fourier integral operator $T_{\phi,a}$ defined by \begin{align*}
T_{\phi,a}f(x)=\int_{\mathbb{R}^{n}}e^{i\phi(x,\xi)}a(x,\xi)\widehat{f}(\xi)d\xi,
\end{align*} is bounded from the local Hardy space $h^1(\mathbb{R}^n)$ to
$L^1(\mathbb{R}^n)$. As a corollary, we can also obtain the corresponding
$L^p(\mathbb{R}^n)$-boundedness when $1