论热激活位错滑动控制的动力学物理和数学金属蠕变理论

IF 0.6 4区 工程技术 Q4 MECHANICS
V. M. Greshnov, R. I. Shaikhutdinov
{"title":"论热激活位错滑动控制的动力学物理和数学金属蠕变理论","authors":"V. M. Greshnov,&nbsp;R. I. Shaikhutdinov","doi":"10.1134/S0025654423602069","DOIUrl":null,"url":null,"abstract":"<p>The rationale for the prospects of using the physical and mathematical theory of metal creep in creep computations is carried out by a comparative analysis of the classical phenomenological and physical and mathematical metal creep theories. On the example of the description by both theories specific results of non-stationary creep experiments and analysis of the theories equations it is shown that implementing the physical kinetic equation for the actual structural parameter of the material, namely the scalar density of immobile dislocations, makes the physical and mathematical theory universal for solving non-stationary metal creep problems with multiaxial loading, when change, including abruptly, temperature, forces and loading rates.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 2","pages":"769 - 780"},"PeriodicalIF":0.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Kinetic Physical and Mathematical Metal Creep Theory Controlled by Thermally Activated Dislocation Sliding\",\"authors\":\"V. M. Greshnov,&nbsp;R. I. Shaikhutdinov\",\"doi\":\"10.1134/S0025654423602069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rationale for the prospects of using the physical and mathematical theory of metal creep in creep computations is carried out by a comparative analysis of the classical phenomenological and physical and mathematical metal creep theories. On the example of the description by both theories specific results of non-stationary creep experiments and analysis of the theories equations it is shown that implementing the physical kinetic equation for the actual structural parameter of the material, namely the scalar density of immobile dislocations, makes the physical and mathematical theory universal for solving non-stationary metal creep problems with multiaxial loading, when change, including abruptly, temperature, forces and loading rates.</p>\",\"PeriodicalId\":697,\"journal\":{\"name\":\"Mechanics of Solids\",\"volume\":\"59 2\",\"pages\":\"769 - 780\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0025654423602069\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654423602069","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 通过对经典现象学金属蠕变理论和物理数学金属蠕变理论的比较分析,说明了在蠕变计算中使用金属蠕变物理数学理论的前景。通过这两种理论对非稳态蠕变实验具体结果的描述以及对理论方程的分析表明,对材料的实际结构参数(即不移动位错的标量密度)实施物理动力学方程,可使物理和数学理论适用于解决多轴加载的非稳态金属蠕变问题,包括温度、力和加载速率突然变化的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Kinetic Physical and Mathematical Metal Creep Theory Controlled by Thermally Activated Dislocation Sliding

On the Kinetic Physical and Mathematical Metal Creep Theory Controlled by Thermally Activated Dislocation Sliding

On the Kinetic Physical and Mathematical Metal Creep Theory Controlled by Thermally Activated Dislocation Sliding

The rationale for the prospects of using the physical and mathematical theory of metal creep in creep computations is carried out by a comparative analysis of the classical phenomenological and physical and mathematical metal creep theories. On the example of the description by both theories specific results of non-stationary creep experiments and analysis of the theories equations it is shown that implementing the physical kinetic equation for the actual structural parameter of the material, namely the scalar density of immobile dislocations, makes the physical and mathematical theory universal for solving non-stationary metal creep problems with multiaxial loading, when change, including abruptly, temperature, forces and loading rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信