Aleksandar Obradović, Bojan Jeremić, Aleksandar Tomović, Slaviša Šalinić, Zoran Mitrović
{"title":"具有耦合弯曲和轴向振动的轴向功能分级欧拉-伯努利梁的质量最小化","authors":"Aleksandar Obradović, Bojan Jeremić, Aleksandar Tomović, Slaviša Šalinić, Zoran Mitrović","doi":"10.1134/S002565442460260X","DOIUrl":null,"url":null,"abstract":"<p>The paper considers shape optimization of Euler–Bernoulli beams with circular, square and rectangular cross-sections made of axially functionally graded materials at a prescribed fundamental frequency. Optimization is carried out by the beam mass minimization. Considerations involve the case of coupled bending and axial vibrations, where complex boundary conditions are the cause of coupling. Pontryagin’s maximum principle is used to solve shape optimization, where a limited diameter or a beam cross-sectional width is used for control. Diameter limit is considered so that the optimized shape of a beam is within the limits of the validity of Euler–Bernoulli theory, and its strength does not decrease for smaller cross-sectional dimensions. The resulting system of differential equations is a two-point boundary value problem, and the shooting method is applied to solve it. The property of self-coupled systems is utilized, where all adjoint variables, except for one variable, are expressed through state variables, which facilitates solving the appropriate differential equations. Theoretical considerations are illustrated by an example. Also, the savings of beam mass in percent are determined, using the cantilever beam with optimal variable cross-section against the cantilever beam of a constant cross-section, where both beams have the same prescribed fundamental frequency.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 3","pages":"1358 - 1375"},"PeriodicalIF":0.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass Minimization of Axially Functionally Graded Euler–Bernoulli Beams with Coupled Bending and Axial Vibrations\",\"authors\":\"Aleksandar Obradović, Bojan Jeremić, Aleksandar Tomović, Slaviša Šalinić, Zoran Mitrović\",\"doi\":\"10.1134/S002565442460260X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper considers shape optimization of Euler–Bernoulli beams with circular, square and rectangular cross-sections made of axially functionally graded materials at a prescribed fundamental frequency. Optimization is carried out by the beam mass minimization. Considerations involve the case of coupled bending and axial vibrations, where complex boundary conditions are the cause of coupling. Pontryagin’s maximum principle is used to solve shape optimization, where a limited diameter or a beam cross-sectional width is used for control. Diameter limit is considered so that the optimized shape of a beam is within the limits of the validity of Euler–Bernoulli theory, and its strength does not decrease for smaller cross-sectional dimensions. The resulting system of differential equations is a two-point boundary value problem, and the shooting method is applied to solve it. The property of self-coupled systems is utilized, where all adjoint variables, except for one variable, are expressed through state variables, which facilitates solving the appropriate differential equations. Theoretical considerations are illustrated by an example. Also, the savings of beam mass in percent are determined, using the cantilever beam with optimal variable cross-section against the cantilever beam of a constant cross-section, where both beams have the same prescribed fundamental frequency.</p>\",\"PeriodicalId\":697,\"journal\":{\"name\":\"Mechanics of Solids\",\"volume\":\"59 3\",\"pages\":\"1358 - 1375\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S002565442460260X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S002565442460260X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Mass Minimization of Axially Functionally Graded Euler–Bernoulli Beams with Coupled Bending and Axial Vibrations
The paper considers shape optimization of Euler–Bernoulli beams with circular, square and rectangular cross-sections made of axially functionally graded materials at a prescribed fundamental frequency. Optimization is carried out by the beam mass minimization. Considerations involve the case of coupled bending and axial vibrations, where complex boundary conditions are the cause of coupling. Pontryagin’s maximum principle is used to solve shape optimization, where a limited diameter or a beam cross-sectional width is used for control. Diameter limit is considered so that the optimized shape of a beam is within the limits of the validity of Euler–Bernoulli theory, and its strength does not decrease for smaller cross-sectional dimensions. The resulting system of differential equations is a two-point boundary value problem, and the shooting method is applied to solve it. The property of self-coupled systems is utilized, where all adjoint variables, except for one variable, are expressed through state variables, which facilitates solving the appropriate differential equations. Theoretical considerations are illustrated by an example. Also, the savings of beam mass in percent are determined, using the cantilever beam with optimal variable cross-section against the cantilever beam of a constant cross-section, where both beams have the same prescribed fundamental frequency.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.