Jianming Jiang, Yandong Ban, Ming Zhang, Zhongyong Huang
{"title":"用于预测二氧化碳排放量的新离散分数累积灰色贡珀兹模型","authors":"Jianming Jiang, Yandong Ban, Ming Zhang, Zhongyong Huang","doi":"10.3389/fenvs.2024.1450354","DOIUrl":null,"url":null,"abstract":"Predicting carbon dioxide emissions is crucial for addressing climate change and achieving environmental sustainability. Accurate emission forecasts provide policymakers with a basis for evaluating the effectiveness of policies, facilitating the design and implementation of emission reduction strategies, and helping businesses adjust their operations to adapt to market changes. Various methods, such as statistical models, machine learning, and grey prediction models, have been widely used in carbon dioxide emission prediction. However, existing research often lacks comparative analysis with other forecasting techniques. This paper constructs a new Discrete Fractional Accumulation Grey Gompertz Model (DFAGGM(1,1) based on grey system theory and provides a detailed solution process. The Whale Optimization Algorithm (WOA) is used to find the hyperparameters in the model. By comparing it with five benchmark models, the effectiveness of DFAGGM(1,1) in predicting carbon dioxide emissions data for China and the United States is validated.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New discrete fractional accumulation Grey Gompertz model for predicting carbon dioxide emissions\",\"authors\":\"Jianming Jiang, Yandong Ban, Ming Zhang, Zhongyong Huang\",\"doi\":\"10.3389/fenvs.2024.1450354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting carbon dioxide emissions is crucial for addressing climate change and achieving environmental sustainability. Accurate emission forecasts provide policymakers with a basis for evaluating the effectiveness of policies, facilitating the design and implementation of emission reduction strategies, and helping businesses adjust their operations to adapt to market changes. Various methods, such as statistical models, machine learning, and grey prediction models, have been widely used in carbon dioxide emission prediction. However, existing research often lacks comparative analysis with other forecasting techniques. This paper constructs a new Discrete Fractional Accumulation Grey Gompertz Model (DFAGGM(1,1) based on grey system theory and provides a detailed solution process. The Whale Optimization Algorithm (WOA) is used to find the hyperparameters in the model. By comparing it with five benchmark models, the effectiveness of DFAGGM(1,1) in predicting carbon dioxide emissions data for China and the United States is validated.\",\"PeriodicalId\":12460,\"journal\":{\"name\":\"Frontiers in Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Environmental Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3389/fenvs.2024.1450354\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1450354","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
New discrete fractional accumulation Grey Gompertz model for predicting carbon dioxide emissions
Predicting carbon dioxide emissions is crucial for addressing climate change and achieving environmental sustainability. Accurate emission forecasts provide policymakers with a basis for evaluating the effectiveness of policies, facilitating the design and implementation of emission reduction strategies, and helping businesses adjust their operations to adapt to market changes. Various methods, such as statistical models, machine learning, and grey prediction models, have been widely used in carbon dioxide emission prediction. However, existing research often lacks comparative analysis with other forecasting techniques. This paper constructs a new Discrete Fractional Accumulation Grey Gompertz Model (DFAGGM(1,1) based on grey system theory and provides a detailed solution process. The Whale Optimization Algorithm (WOA) is used to find the hyperparameters in the model. By comparing it with five benchmark models, the effectiveness of DFAGGM(1,1) in predicting carbon dioxide emissions data for China and the United States is validated.
期刊介绍:
Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions.
Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.