仅在边界上具有可变指数和 log-Holder 连续性的 Poincaré 和 Sobolev 不等式

David Cruz-Uribe, Fernando López-Garcí a, Ignacio Ojea
{"title":"仅在边界上具有可变指数和 log-Holder 连续性的 Poincaré 和 Sobolev 不等式","authors":"David Cruz-Uribe, Fernando López-Garcí a, Ignacio Ojea","doi":"arxiv-2409.03660","DOIUrl":null,"url":null,"abstract":"We prove Sobolev-Poincar\\'e and Poincar\\'e inequalities in variable Lebesgue\nspaces $L^{p(\\cdot)}(\\Omega)$, with $\\Omega\\subset{\\mathbb R}^n$ a bounded John\ndomain, with weaker regularity assumptions on the exponent $p(\\cdot)$ that have\nbeen used previously. In particular, we require $p(\\cdot)$ to satisfy a new\n\\emph{boundary $\\log$-H\\\"older condition} that imposes some logarithmic decay\non the oscillation of $p(\\cdot)$ towards the boundary of the domain. Some\ncontrol over the interior oscillation of $p(\\cdot)$ is also needed, but it is\ngiven by a very general condition that allows $p(\\cdot)$ to be discontinuous at\nevery point of $\\Omega$. Our results follows from a local-to-global argument\nbased on the continuity of certain Hardy type operators. We provide examples\nthat show that our boundary $\\log$-H\\\"older condition is essentially necessary\nfor our main results. The same examples are adapted to show that this condition\nis not sufficient for other related inequalities. Finally, we give an\napplication to a Neumann problem for a degenerate $p(\\cdot)$-Laplacian.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poincaré and Sobolev inequalities with variable exponents and log-Holder continuity only at the boundary\",\"authors\":\"David Cruz-Uribe, Fernando López-Garcí a, Ignacio Ojea\",\"doi\":\"arxiv-2409.03660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove Sobolev-Poincar\\\\'e and Poincar\\\\'e inequalities in variable Lebesgue\\nspaces $L^{p(\\\\cdot)}(\\\\Omega)$, with $\\\\Omega\\\\subset{\\\\mathbb R}^n$ a bounded John\\ndomain, with weaker regularity assumptions on the exponent $p(\\\\cdot)$ that have\\nbeen used previously. In particular, we require $p(\\\\cdot)$ to satisfy a new\\n\\\\emph{boundary $\\\\log$-H\\\\\\\"older condition} that imposes some logarithmic decay\\non the oscillation of $p(\\\\cdot)$ towards the boundary of the domain. Some\\ncontrol over the interior oscillation of $p(\\\\cdot)$ is also needed, but it is\\ngiven by a very general condition that allows $p(\\\\cdot)$ to be discontinuous at\\nevery point of $\\\\Omega$. Our results follows from a local-to-global argument\\nbased on the continuity of certain Hardy type operators. We provide examples\\nthat show that our boundary $\\\\log$-H\\\\\\\"older condition is essentially necessary\\nfor our main results. The same examples are adapted to show that this condition\\nis not sufficient for other related inequalities. Finally, we give an\\napplication to a Neumann problem for a degenerate $p(\\\\cdot)$-Laplacian.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了可变Lebesguespaces $L^{p(\cdot)}(\Omega)$中的Sobolev-Poincar\'e 和 Poincar\'e 不等式,其中$\Omega\subset{mathbb R}^n$是一个有界的Johndomain,对指数$p(\cdot)$的正则性假设比以前使用的要弱。特别是,我们要求$p(\cdot)$满足一个新的emph{边界$\log$-H\"旧条件},该条件对$p(\cdot)$向域边界的振荡施加了一些对数衰减。还需要对$p(\cdot)$的内部振荡进行一些控制,但这是由一个非常一般的条件给出的,它允许$p(\cdot)$在$\Omega$的每一点上都是不连续的。我们的结果来自基于某些哈代类型算子连续性的局部到全局论证。我们举例说明,我们的边界$\log$-H\"旧条件对于我们的主要结果是必要的。同样的例子也可以证明,这个条件对于其他相关的不等式来说是不充分的。最后,我们给出了一个退化$p(\cdot)$拉普拉斯的诺伊曼问题的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poincaré and Sobolev inequalities with variable exponents and log-Holder continuity only at the boundary
We prove Sobolev-Poincar\'e and Poincar\'e inequalities in variable Lebesgue spaces $L^{p(\cdot)}(\Omega)$, with $\Omega\subset{\mathbb R}^n$ a bounded John domain, with weaker regularity assumptions on the exponent $p(\cdot)$ that have been used previously. In particular, we require $p(\cdot)$ to satisfy a new \emph{boundary $\log$-H\"older condition} that imposes some logarithmic decay on the oscillation of $p(\cdot)$ towards the boundary of the domain. Some control over the interior oscillation of $p(\cdot)$ is also needed, but it is given by a very general condition that allows $p(\cdot)$ to be discontinuous at every point of $\Omega$. Our results follows from a local-to-global argument based on the continuity of certain Hardy type operators. We provide examples that show that our boundary $\log$-H\"older condition is essentially necessary for our main results. The same examples are adapted to show that this condition is not sufficient for other related inequalities. Finally, we give an application to a Neumann problem for a degenerate $p(\cdot)$-Laplacian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信