措施的巴拉亚吉色:接近顶点的行为

Christophe Charlier, Jonatan Lenells
{"title":"措施的巴拉亚吉色:接近顶点的行为","authors":"Christophe Charlier, Jonatan Lenells","doi":"arxiv-2408.05487","DOIUrl":null,"url":null,"abstract":"Let $\\mu$ be a positive measure supported on a domain $\\Omega$. We consider\nthe behavior of the balayage measure $\\nu:=\\mathrm{Bal}(\\mu,\\partial \\Omega)$\nnear a point $z_{0}\\in \\partial \\Omega$ at which $\\Omega$ has an\noutward-pointing cusp. Assuming that the order and coefficient of tangency of\nthe cusp are $d>0$ and $a>0$, respectively, and that $d\\mu(z) \\asymp\n|z-z_{0}|^{2b-2}d^{2}z$ as $z\\to z_0$ for some $b > 0$, we obtain the leading\norder term of $\\nu$ near $z_{0}$. This leading term is universal in the sense\nthat it only depends on $d$, $a$, and $b$. We also treat the case when the\ndomain has multiple corners and cusps at the same point. Finally, we obtain an\nexplicit expression for the balayage of the uniform measure on the tacnodal\nregion between two osculating circles, and we give an application of this\nresult to two-dimensional Coulomb gases.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balayage of measures: behavior near a cusp\",\"authors\":\"Christophe Charlier, Jonatan Lenells\",\"doi\":\"arxiv-2408.05487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mu$ be a positive measure supported on a domain $\\\\Omega$. We consider\\nthe behavior of the balayage measure $\\\\nu:=\\\\mathrm{Bal}(\\\\mu,\\\\partial \\\\Omega)$\\nnear a point $z_{0}\\\\in \\\\partial \\\\Omega$ at which $\\\\Omega$ has an\\noutward-pointing cusp. Assuming that the order and coefficient of tangency of\\nthe cusp are $d>0$ and $a>0$, respectively, and that $d\\\\mu(z) \\\\asymp\\n|z-z_{0}|^{2b-2}d^{2}z$ as $z\\\\to z_0$ for some $b > 0$, we obtain the leading\\norder term of $\\\\nu$ near $z_{0}$. This leading term is universal in the sense\\nthat it only depends on $d$, $a$, and $b$. We also treat the case when the\\ndomain has multiple corners and cusps at the same point. Finally, we obtain an\\nexplicit expression for the balayage of the uniform measure on the tacnodal\\nregion between two osculating circles, and we give an application of this\\nresult to two-dimensional Coulomb gases.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\mu$ 是一个支持在域 $\Omega$ 上的正量度。我们考虑的是在\partial \Omega$中的点$z_{0}附近的巴拉维度量$\nu:=\mathrm{Bal}(\mu,\partial \Omega)$的行为,在这个点上,$\Omega$有一个向外指向的尖点。假定尖顶的阶数和切线系数分别为 $d>0$ 和 $a>0$,并且 $d\mu(z) \asymp|z-z_{0}|^{2b-2}d^{2}z$ 当 $z\to z_0$ 为某个 $b > 0$时,我们得到 $z_{0}$ 附近的 $\nu$ 的前导阶项。这个前导项是普遍的,因为它只取决于 $d$、$a$ 和 $b$。我们还处理了当域在同一点上有多个角和尖点时的情况。最后,我们得到了两个邻接圆之间的塔克诺德区域上的均匀量的明确表达式,并给出了这一结果在二维库仑气体中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balayage of measures: behavior near a cusp
Let $\mu$ be a positive measure supported on a domain $\Omega$. We consider the behavior of the balayage measure $\nu:=\mathrm{Bal}(\mu,\partial \Omega)$ near a point $z_{0}\in \partial \Omega$ at which $\Omega$ has an outward-pointing cusp. Assuming that the order and coefficient of tangency of the cusp are $d>0$ and $a>0$, respectively, and that $d\mu(z) \asymp |z-z_{0}|^{2b-2}d^{2}z$ as $z\to z_0$ for some $b > 0$, we obtain the leading order term of $\nu$ near $z_{0}$. This leading term is universal in the sense that it only depends on $d$, $a$, and $b$. We also treat the case when the domain has multiple corners and cusps at the same point. Finally, we obtain an explicit expression for the balayage of the uniform measure on the tacnodal region between two osculating circles, and we give an application of this result to two-dimensional Coulomb gases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信