论潘列特 I方程实解的渐近性

Wen-Gao Long, Jun Xia
{"title":"论潘列特 I方程实解的渐近性","authors":"Wen-Gao Long, Jun Xia","doi":"arxiv-2409.03313","DOIUrl":null,"url":null,"abstract":"In this paper, we revisit the asymptotic formulas of real Painlev\\'e I\ntranscendents as the independent variable tends to negative infinity, which\nwere initially derived by Kapaev with the complex WKB method. Using the\nRiemann-Hilbert method, we improve the error estimates of the oscillatory type\nasymptotics and provide precise error estimates of the singular type\nasymptotics. We also establish the corresponding asymptotics for the associated\nHamiltonians of real Painlev\\'e I transcendents. In addition, two typos in the\nmentioned asymptotic behaviors in literature are corrected.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"267 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the asymptotics of real solutions for the Painlevé I equation\",\"authors\":\"Wen-Gao Long, Jun Xia\",\"doi\":\"arxiv-2409.03313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we revisit the asymptotic formulas of real Painlev\\\\'e I\\ntranscendents as the independent variable tends to negative infinity, which\\nwere initially derived by Kapaev with the complex WKB method. Using the\\nRiemann-Hilbert method, we improve the error estimates of the oscillatory type\\nasymptotics and provide precise error estimates of the singular type\\nasymptotics. We also establish the corresponding asymptotics for the associated\\nHamiltonians of real Painlev\\\\'e I transcendents. In addition, two typos in the\\nmentioned asymptotic behaviors in literature are corrected.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"267 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们重温了实 Painlev\'e Itranscendents 在自变量趋于负无穷时的渐近公式,这些公式最初是由 Kapaev 用复数 WKB 方法推导出来的。利用黎曼-希尔伯特方法,我们改进了振荡型渐近线的误差估计,并提供了奇异型渐近线的精确误差估计。我们还为实 Painlev\'e I 超越子的相关哈密顿建立了相应的渐近线。此外,还纠正了文献中提到的渐近行为中的两个错字。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the asymptotics of real solutions for the Painlevé I equation
In this paper, we revisit the asymptotic formulas of real Painlev\'e I transcendents as the independent variable tends to negative infinity, which were initially derived by Kapaev with the complex WKB method. Using the Riemann-Hilbert method, we improve the error estimates of the oscillatory type asymptotics and provide precise error estimates of the singular type asymptotics. We also establish the corresponding asymptotics for the associated Hamiltonians of real Painlev\'e I transcendents. In addition, two typos in the mentioned asymptotic behaviors in literature are corrected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信