非线性非周期性均质化:存在性、局部唯一性和估计值

Lutz Recke
{"title":"非线性非周期性均质化:存在性、局部唯一性和估计值","authors":"Lutz Recke","doi":"arxiv-2408.06705","DOIUrl":null,"url":null,"abstract":"We consider periodic homogenization with localized defects of boundary value\nproblems for semilinear ODE systems of the type $$\n\\Big((A(x/\\varepsilon)+B(x/\\varepsilon))u'(x)+c(x,u(x))\\Big)'= d(x,u(x)) \\mbox{\nfor } x \\in (0,1),\\; u(0)=u(1)=0. $$ Our assumptions are, roughly speaking, as\nfollows: $A \\in L^\\infty(\\mathbb{R};\\mathbb{M}_n)$ is 1-periodic, $B \\in\nL^\\infty(\\mathbb{R};\\mathbb{M}_n))\\cap L^1(\\mathbb{R};\\mathbb{M}_n))$, $A(y)$\nand $A(y)+B(y)$ are positive definite uniformly with respect to $y$,\n$c(x,\\cdot),d(x,\\cdot)\\in C^1(\\mathbb{R}^n;\\mathbb{R}^n))$, $c(\\cdot,u) \\in\nC([0,1];\\mathbb{R}^n)$ and $d(\\cdot,u) \\in L^\\infty((0,1);\\mathbb{R}^n)$. For\nsmall $\\varepsilon>0$ we show existence of weak solutions $u=u_\\varepsilon$ as\nwell as their local uniqueness for $\\|u-u_0\\|_\\infty \\approx 0$, where $u_0$ is\na given non-degenerate solution to the homogenized problem, and we prove that\n$\\|u_\\varepsilon-u_0\\|_\\infty\\to 0$ and, if $c(\\cdot,u)$ is $C^1$-smooth, that\n$\\|u_\\varepsilon-u_0\\|_\\infty=O(\\varepsilon)$ for $\\varepsilon \\to 0$. The main\ntool of the proofs is an abstract result of implicit function theorem type\nwhich in the past has been applied to singular perturbation as well as to\nperiodic homogenization of nonlinear ODEs and PDEs and, hence, which permits a\ncommon approach to existence and local uniqueness results for singularly\nperturbed problems and for homogenization problems.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear non-periodic homogenization: Existence, local uniqueness and estimates\",\"authors\":\"Lutz Recke\",\"doi\":\"arxiv-2408.06705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider periodic homogenization with localized defects of boundary value\\nproblems for semilinear ODE systems of the type $$\\n\\\\Big((A(x/\\\\varepsilon)+B(x/\\\\varepsilon))u'(x)+c(x,u(x))\\\\Big)'= d(x,u(x)) \\\\mbox{\\nfor } x \\\\in (0,1),\\\\; u(0)=u(1)=0. $$ Our assumptions are, roughly speaking, as\\nfollows: $A \\\\in L^\\\\infty(\\\\mathbb{R};\\\\mathbb{M}_n)$ is 1-periodic, $B \\\\in\\nL^\\\\infty(\\\\mathbb{R};\\\\mathbb{M}_n))\\\\cap L^1(\\\\mathbb{R};\\\\mathbb{M}_n))$, $A(y)$\\nand $A(y)+B(y)$ are positive definite uniformly with respect to $y$,\\n$c(x,\\\\cdot),d(x,\\\\cdot)\\\\in C^1(\\\\mathbb{R}^n;\\\\mathbb{R}^n))$, $c(\\\\cdot,u) \\\\in\\nC([0,1];\\\\mathbb{R}^n)$ and $d(\\\\cdot,u) \\\\in L^\\\\infty((0,1);\\\\mathbb{R}^n)$. For\\nsmall $\\\\varepsilon>0$ we show existence of weak solutions $u=u_\\\\varepsilon$ as\\nwell as their local uniqueness for $\\\\|u-u_0\\\\|_\\\\infty \\\\approx 0$, where $u_0$ is\\na given non-degenerate solution to the homogenized problem, and we prove that\\n$\\\\|u_\\\\varepsilon-u_0\\\\|_\\\\infty\\\\to 0$ and, if $c(\\\\cdot,u)$ is $C^1$-smooth, that\\n$\\\\|u_\\\\varepsilon-u_0\\\\|_\\\\infty=O(\\\\varepsilon)$ for $\\\\varepsilon \\\\to 0$. The main\\ntool of the proofs is an abstract result of implicit function theorem type\\nwhich in the past has been applied to singular perturbation as well as to\\nperiodic homogenization of nonlinear ODEs and PDEs and, hence, which permits a\\ncommon approach to existence and local uniqueness results for singularly\\nperturbed problems and for homogenization problems.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了$$\Big((A(x/\varepsilon)+B(x/\varepsilon))u'(x)+c(x,u(x))\Big)'=d(x,u(x)) 类型的半线性 ODE 系统的边界值问题的局部缺陷的周期同质化问题。\$$ 我们的假设大致如下:$A在L^\infty(\mathbb{R};\mathbb{M}_n)$中是1周期的,$B在L^\infty(\mathbb{R};\mathbb{M}_n))\cap L^1(\mathbb{R};\))$,$A(y)$和$A(y)+B(y)$是关于$y$的均匀正定值,$c(x,\cdot),d(x,\cdot)在C^1(\mathbb{R}^n;\))$,$c(\cdot,u)\inC([0,1];\mathbb{R}^n)$和$d(\cdot,u)\in L^\infty((0,1);\mathbb{R}^n)$。对于小$\varepsilon>0$,我们证明了弱解$u=u_\varepsilon$的存在性以及它们对于$\|u-u_0\|_\infty \approx 0$的局部唯一性,其中$u_0$是均质化问题的给定非退化解、我们证明$\|u_\varepsilon-u_0\|_\infty\to 0$,并且,如果$c(\cdot,u)$是$C^1$光滑的,那么对于$\varepsilon \to 0$,$\|u_\varepsilon-u_0\|_\infty=O(\varepsilon)$。证明的主要工具是隐函数定理类型的抽象结果,它过去曾被应用于奇异扰动以及非线性 ODE 和 PDE 的周期同质化,因此,它允许对奇异扰动问题和同质化问题的存在性和局部唯一性结果采用共同的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear non-periodic homogenization: Existence, local uniqueness and estimates
We consider periodic homogenization with localized defects of boundary value problems for semilinear ODE systems of the type $$ \Big((A(x/\varepsilon)+B(x/\varepsilon))u'(x)+c(x,u(x))\Big)'= d(x,u(x)) \mbox{ for } x \in (0,1),\; u(0)=u(1)=0. $$ Our assumptions are, roughly speaking, as follows: $A \in L^\infty(\mathbb{R};\mathbb{M}_n)$ is 1-periodic, $B \in L^\infty(\mathbb{R};\mathbb{M}_n))\cap L^1(\mathbb{R};\mathbb{M}_n))$, $A(y)$ and $A(y)+B(y)$ are positive definite uniformly with respect to $y$, $c(x,\cdot),d(x,\cdot)\in C^1(\mathbb{R}^n;\mathbb{R}^n))$, $c(\cdot,u) \in C([0,1];\mathbb{R}^n)$ and $d(\cdot,u) \in L^\infty((0,1);\mathbb{R}^n)$. For small $\varepsilon>0$ we show existence of weak solutions $u=u_\varepsilon$ as well as their local uniqueness for $\|u-u_0\|_\infty \approx 0$, where $u_0$ is a given non-degenerate solution to the homogenized problem, and we prove that $\|u_\varepsilon-u_0\|_\infty\to 0$ and, if $c(\cdot,u)$ is $C^1$-smooth, that $\|u_\varepsilon-u_0\|_\infty=O(\varepsilon)$ for $\varepsilon \to 0$. The main tool of the proofs is an abstract result of implicit function theorem type which in the past has been applied to singular perturbation as well as to periodic homogenization of nonlinear ODEs and PDEs and, hence, which permits a common approach to existence and local uniqueness results for singularly perturbed problems and for homogenization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信