{"title":"曲线及其圆锥延伸的广义平方函数估计值","authors":"Robert Schippa","doi":"arxiv-2408.07248","DOIUrl":null,"url":null,"abstract":"We show sharp square function estimates for curves in the plane whose\ncurvature degenerates at a point and estimates sharp up to endpoints for cones\nover these curves. To this end, for curves of finite type we extend the\nclassical C\\'ordoba--Fefferman biorthogonality. For cones over degenerate\ncurves, we analyze wave envelope estimates proved via High-Low-decomposition.\nThe arguments are subsequently extended to the cone over the complex parabola.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized square function estimates for curves and their conical extensions\",\"authors\":\"Robert Schippa\",\"doi\":\"arxiv-2408.07248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show sharp square function estimates for curves in the plane whose\\ncurvature degenerates at a point and estimates sharp up to endpoints for cones\\nover these curves. To this end, for curves of finite type we extend the\\nclassical C\\\\'ordoba--Fefferman biorthogonality. For cones over degenerate\\ncurves, we analyze wave envelope estimates proved via High-Low-decomposition.\\nThe arguments are subsequently extended to the cone over the complex parabola.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generalized square function estimates for curves and their conical extensions
We show sharp square function estimates for curves in the plane whose
curvature degenerates at a point and estimates sharp up to endpoints for cones
over these curves. To this end, for curves of finite type we extend the
classical C\'ordoba--Fefferman biorthogonality. For cones over degenerate
curves, we analyze wave envelope estimates proved via High-Low-decomposition.
The arguments are subsequently extended to the cone over the complex parabola.