曲线及其圆锥延伸的广义平方函数估计值

Robert Schippa
{"title":"曲线及其圆锥延伸的广义平方函数估计值","authors":"Robert Schippa","doi":"arxiv-2408.07248","DOIUrl":null,"url":null,"abstract":"We show sharp square function estimates for curves in the plane whose\ncurvature degenerates at a point and estimates sharp up to endpoints for cones\nover these curves. To this end, for curves of finite type we extend the\nclassical C\\'ordoba--Fefferman biorthogonality. For cones over degenerate\ncurves, we analyze wave envelope estimates proved via High-Low-decomposition.\nThe arguments are subsequently extended to the cone over the complex parabola.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized square function estimates for curves and their conical extensions\",\"authors\":\"Robert Schippa\",\"doi\":\"arxiv-2408.07248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show sharp square function estimates for curves in the plane whose\\ncurvature degenerates at a point and estimates sharp up to endpoints for cones\\nover these curves. To this end, for curves of finite type we extend the\\nclassical C\\\\'ordoba--Fefferman biorthogonality. For cones over degenerate\\ncurves, we analyze wave envelope estimates proved via High-Low-decomposition.\\nThe arguments are subsequently extended to the cone over the complex parabola.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了平面内曲率在某一点退化的曲线的尖锐平方函数估计值,以及这些曲线上圆锥的尖锐端点估计值。为此,对于有限类型的曲线,我们扩展了经典的 C\'ordoba--Fefferman 双对偶性。对于退化曲线上的圆锥,我们分析了通过高低分解证明的波包络估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized square function estimates for curves and their conical extensions
We show sharp square function estimates for curves in the plane whose curvature degenerates at a point and estimates sharp up to endpoints for cones over these curves. To this end, for curves of finite type we extend the classical C\'ordoba--Fefferman biorthogonality. For cones over degenerate curves, we analyze wave envelope estimates proved via High-Low-decomposition. The arguments are subsequently extended to the cone over the complex parabola.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信