乘积空间上傅里叶积分的正则性

Chaoqiang Tan, Zipeng Wang
{"title":"乘积空间上傅里叶积分的正则性","authors":"Chaoqiang Tan, Zipeng Wang","doi":"arxiv-2408.09691","DOIUrl":null,"url":null,"abstract":"We study a family of Fourier integral operators by allowing their symbols to\nsatisfy a multi-parameter differential inequality on R^N. We show that these\noperators of order -(N-1)/2 are bounded from classical, atom decomposable\nH^1-Hardy space to L^1(R^N). Consequently, we obtain a sharp L^p-regularity\nresult due to Seeger, Sogge and Stein.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of Fourier integrals on product spaces\",\"authors\":\"Chaoqiang Tan, Zipeng Wang\",\"doi\":\"arxiv-2408.09691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a family of Fourier integral operators by allowing their symbols to\\nsatisfy a multi-parameter differential inequality on R^N. We show that these\\noperators of order -(N-1)/2 are bounded from classical, atom decomposable\\nH^1-Hardy space to L^1(R^N). Consequently, we obtain a sharp L^p-regularity\\nresult due to Seeger, Sogge and Stein.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过让傅里叶积分算子的符号满足 R^N 上的多参数微分不等式来研究傅里叶积分算子族。我们证明,这些阶数为-(N-1)/2 的算子从经典、原子可分解的 H^1-Hardy 空间到 L^1(R^N) 都是有界的。因此,我们得到了 Seeger、Sogge 和 Stein 提出的一个尖锐的 L^p-regularity 结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of Fourier integrals on product spaces
We study a family of Fourier integral operators by allowing their symbols to satisfy a multi-parameter differential inequality on R^N. We show that these operators of order -(N-1)/2 are bounded from classical, atom decomposable H^1-Hardy space to L^1(R^N). Consequently, we obtain a sharp L^p-regularity result due to Seeger, Sogge and Stein.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信