有限双变量双谐波 M-康豪斯多项式

Esra Güldoğan Lekesiz, Bayram Çekim, Mehmet Ali Özarslan
{"title":"有限双变量双谐波 M-康豪斯多项式","authors":"Esra Güldoğan Lekesiz, Bayram Çekim, Mehmet Ali Özarslan","doi":"arxiv-2409.03355","DOIUrl":null,"url":null,"abstract":"In this paper, we construct the pair of finite bivariate biorthogonal\nM-Konhauser polynomials, reduced to the finite orthogonal polynomials\n$M_{n}^{(p,q)}(t)$, by choosing appropriate parameters in order to obtain a\nrelation between the Jacobi Konhauser polynomials and this new finite bivariate\nbiorthogonal polynomials $_{K}M_{n;\\upsilon}^{(p,q)}(z,t)$ similar to the\nrelation between the classical Jacobi polynomials $P_{n}^{(p,q)}(t)$ and the\nfinite orthogonal polynomials $M_{n}^{(p,q)}(t)$. Several properties like\ngenerating function, operational/integral representation are derived and some\napplications like fractional calculus, Fourier transform and Laplace transform\nare studied thanks to that new transition relation and the definition of finite\nbivariate M-Konhauser polynomials.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Bivariate Biorthogonal M-Konhauser Polynomials\",\"authors\":\"Esra Güldoğan Lekesiz, Bayram Çekim, Mehmet Ali Özarslan\",\"doi\":\"arxiv-2409.03355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct the pair of finite bivariate biorthogonal\\nM-Konhauser polynomials, reduced to the finite orthogonal polynomials\\n$M_{n}^{(p,q)}(t)$, by choosing appropriate parameters in order to obtain a\\nrelation between the Jacobi Konhauser polynomials and this new finite bivariate\\nbiorthogonal polynomials $_{K}M_{n;\\\\upsilon}^{(p,q)}(z,t)$ similar to the\\nrelation between the classical Jacobi polynomials $P_{n}^{(p,q)}(t)$ and the\\nfinite orthogonal polynomials $M_{n}^{(p,q)}(t)$. Several properties like\\ngenerating function, operational/integral representation are derived and some\\napplications like fractional calculus, Fourier transform and Laplace transform\\nare studied thanks to that new transition relation and the definition of finite\\nbivariate M-Konhauser polynomials.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过选择适当的参数,构建了一对有限的双变量双正交M-Konhauser多项式,并将其简化为有限的正交多项式$M_{n}^{(p,q)}(t)$,从而得到雅可比Konhauser多项式与这一新的有限双变量双正交多项式$_{K}M_{n;\upsilon}^{(p,q)}(z,t)$ 与经典雅可比多项式 $P_{n}^{(p,q)}(t)$ 和有限正交多项式 $M_{n}^{(p,q)}(t)$ 之间的关系类似。由于新的转换关系和有限二元 M-Konhauser 多项式的定义,我们推导出了一些性质,如生成函数、运算/积分表示,并研究了一些应用,如分数微积分、傅里叶变换和拉普拉斯变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Bivariate Biorthogonal M-Konhauser Polynomials
In this paper, we construct the pair of finite bivariate biorthogonal M-Konhauser polynomials, reduced to the finite orthogonal polynomials $M_{n}^{(p,q)}(t)$, by choosing appropriate parameters in order to obtain a relation between the Jacobi Konhauser polynomials and this new finite bivariate biorthogonal polynomials $_{K}M_{n;\upsilon}^{(p,q)}(z,t)$ similar to the relation between the classical Jacobi polynomials $P_{n}^{(p,q)}(t)$ and the finite orthogonal polynomials $M_{n}^{(p,q)}(t)$. Several properties like generating function, operational/integral representation are derived and some applications like fractional calculus, Fourier transform and Laplace transform are studied thanks to that new transition relation and the definition of finite bivariate M-Konhauser polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信