正交多项式族的偏和变形

Erik Koelink, Pablo Román, Wadim Zudilin
{"title":"正交多项式族的偏和变形","authors":"Erik Koelink, Pablo Román, Wadim Zudilin","doi":"arxiv-2409.00261","DOIUrl":null,"url":null,"abstract":"There are several questions one may ask about polynomials\n$q_m(x)=q_m(x;t)=\\sum_{n=0}^mt^mp_n(x)$ attached to a family of orthogonal\npolynomials $\\{p_n(x)\\}_{n\\ge0}$. In this note we draw attention to the\nnaturalness of this partial-sum deformation and related beautiful structures.\nIn particular, we investigate the location and distribution of zeros of\n$q_m(x;t)$ in the case of varying real parameter $t$.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A partial-sum deformation for a family of orthogonal polynomials\",\"authors\":\"Erik Koelink, Pablo Román, Wadim Zudilin\",\"doi\":\"arxiv-2409.00261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are several questions one may ask about polynomials\\n$q_m(x)=q_m(x;t)=\\\\sum_{n=0}^mt^mp_n(x)$ attached to a family of orthogonal\\npolynomials $\\\\{p_n(x)\\\\}_{n\\\\ge0}$. In this note we draw attention to the\\nnaturalness of this partial-sum deformation and related beautiful structures.\\nIn particular, we investigate the location and distribution of zeros of\\n$q_m(x;t)$ in the case of varying real parameter $t$.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关于附在正交多项式$\{p_n(x)\}_{n\ge0}$族上的多项式$q_m(x)=q_m(x;t)=\sum_{n=0}^mt^mp_n(x)$,人们可能会提出几个问题。在本论文中,我们将关注这种偏和变形的自然性以及相关的优美结构。特别是,我们将研究在实数参数 $t$ 变化的情况下,$q_m(x;t)$ 的零点的位置和分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A partial-sum deformation for a family of orthogonal polynomials
There are several questions one may ask about polynomials $q_m(x)=q_m(x;t)=\sum_{n=0}^mt^mp_n(x)$ attached to a family of orthogonal polynomials $\{p_n(x)\}_{n\ge0}$. In this note we draw attention to the naturalness of this partial-sum deformation and related beautiful structures. In particular, we investigate the location and distribution of zeros of $q_m(x;t)$ in the case of varying real parameter $t$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信