{"title":"正交多项式族的偏和变形","authors":"Erik Koelink, Pablo Román, Wadim Zudilin","doi":"arxiv-2409.00261","DOIUrl":null,"url":null,"abstract":"There are several questions one may ask about polynomials\n$q_m(x)=q_m(x;t)=\\sum_{n=0}^mt^mp_n(x)$ attached to a family of orthogonal\npolynomials $\\{p_n(x)\\}_{n\\ge0}$. In this note we draw attention to the\nnaturalness of this partial-sum deformation and related beautiful structures.\nIn particular, we investigate the location and distribution of zeros of\n$q_m(x;t)$ in the case of varying real parameter $t$.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A partial-sum deformation for a family of orthogonal polynomials\",\"authors\":\"Erik Koelink, Pablo Román, Wadim Zudilin\",\"doi\":\"arxiv-2409.00261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are several questions one may ask about polynomials\\n$q_m(x)=q_m(x;t)=\\\\sum_{n=0}^mt^mp_n(x)$ attached to a family of orthogonal\\npolynomials $\\\\{p_n(x)\\\\}_{n\\\\ge0}$. In this note we draw attention to the\\nnaturalness of this partial-sum deformation and related beautiful structures.\\nIn particular, we investigate the location and distribution of zeros of\\n$q_m(x;t)$ in the case of varying real parameter $t$.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A partial-sum deformation for a family of orthogonal polynomials
There are several questions one may ask about polynomials
$q_m(x)=q_m(x;t)=\sum_{n=0}^mt^mp_n(x)$ attached to a family of orthogonal
polynomials $\{p_n(x)\}_{n\ge0}$. In this note we draw attention to the
naturalness of this partial-sum deformation and related beautiful structures.
In particular, we investigate the location and distribution of zeros of
$q_m(x;t)$ in the case of varying real parameter $t$.