大集合上双唇隙映射的因式分解和片断仿射逼近

Guy C. David, Matthew Romney, Raanan Schul
{"title":"大集合上双唇隙映射的因式分解和片断仿射逼近","authors":"Guy C. David, Matthew Romney, Raanan Schul","doi":"arxiv-2409.05825","DOIUrl":null,"url":null,"abstract":"A well-known open problem asks whether every bi-Lipschitz homeomorphism of\n$\\mathbb{R}^d$ factors as a composition of mappings of small distortion. We\nshow that every bi-Lipschitz embedding of the unit cube $[0,1]^d$ into\n$\\mathbb{R}^d$ factors into finitely many global bi-Lipschitz mappings of small\ndistortion, outside of an exceptional set of arbitrarily small Lebesgue\nmeasure, which cannot in general be removed. Our main tool is a corona-type\ndecomposition theorem for bi-Lipschitz mappings. As corollaries, we obtain a\nrelated factorization result for bi-Lipschitz homeomorphisms of the $d$-sphere,\nand we show that bi-Lipschitz embeddings of the unit $d$-cube in $\\mathbb{R}^d$\ncan be approximated by global piecewise affine homeomorphisms outside of a\nsmall set.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factorization and piecewise affine approximation of bi-Lipschitz mappings on large sets\",\"authors\":\"Guy C. David, Matthew Romney, Raanan Schul\",\"doi\":\"arxiv-2409.05825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A well-known open problem asks whether every bi-Lipschitz homeomorphism of\\n$\\\\mathbb{R}^d$ factors as a composition of mappings of small distortion. We\\nshow that every bi-Lipschitz embedding of the unit cube $[0,1]^d$ into\\n$\\\\mathbb{R}^d$ factors into finitely many global bi-Lipschitz mappings of small\\ndistortion, outside of an exceptional set of arbitrarily small Lebesgue\\nmeasure, which cannot in general be removed. Our main tool is a corona-type\\ndecomposition theorem for bi-Lipschitz mappings. As corollaries, we obtain a\\nrelated factorization result for bi-Lipschitz homeomorphisms of the $d$-sphere,\\nand we show that bi-Lipschitz embeddings of the unit $d$-cube in $\\\\mathbb{R}^d$\\ncan be approximated by global piecewise affine homeomorphisms outside of a\\nsmall set.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个著名的开放性问题是:$\mathbb{R}^d$ 的每个双利浦齐兹同构是否都是由小变形映射组成的。我们发现,单位立方$[0,1]^d$嵌入$mathbb{R}^d$的每一个双利普齐兹同构都是有限多个小失真全局双利普齐兹映射的因子,除了一个任意小Lebesguemeasure的特殊集合之外,这个特殊集合在一般情况下是无法去除的。我们的主要工具是双利浦齐兹映射的日冕式分解定理。作为推论,我们得到了$d$球的双利浦齐兹同构的有因式分解结果,并证明了在$\mathbb{R}^d$中单位$d$立方体的双利浦齐兹嵌入可以通过小集合外的全局片断仿射同构来近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factorization and piecewise affine approximation of bi-Lipschitz mappings on large sets
A well-known open problem asks whether every bi-Lipschitz homeomorphism of $\mathbb{R}^d$ factors as a composition of mappings of small distortion. We show that every bi-Lipschitz embedding of the unit cube $[0,1]^d$ into $\mathbb{R}^d$ factors into finitely many global bi-Lipschitz mappings of small distortion, outside of an exceptional set of arbitrarily small Lebesgue measure, which cannot in general be removed. Our main tool is a corona-type decomposition theorem for bi-Lipschitz mappings. As corollaries, we obtain a related factorization result for bi-Lipschitz homeomorphisms of the $d$-sphere, and we show that bi-Lipschitz embeddings of the unit $d$-cube in $\mathbb{R}^d$ can be approximated by global piecewise affine homeomorphisms outside of a small set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信