{"title":"半空间准线性椭圆方程有界解的对称性","authors":"Phuong Le","doi":"arxiv-2409.04804","DOIUrl":null,"url":null,"abstract":"Let $u$ be a bounded positive solution to the problem $-\\Delta_p u = f(u)$ in\n$\\mathbb{R}^N_+$ with zero Dirichlet boundary condition, where $p>1$ and $f$ is\na locally Lipschitz continuous function. Among other things, we show that if\n$f(\\sup_{\\mathbb{R}^N_+} u)=0$ and $f$ satisfies some other mild conditions,\nthen $u$ depends only on $x_N$ and monotone increasing in the $x_N$-direction.\nOur result partially extends a classical result of Berestycki, Caffarelli and\nNirenberg in 1993 to the $p$-Laplacian.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry of bounded solutions to quasilinear elliptic equations in a half-space\",\"authors\":\"Phuong Le\",\"doi\":\"arxiv-2409.04804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $u$ be a bounded positive solution to the problem $-\\\\Delta_p u = f(u)$ in\\n$\\\\mathbb{R}^N_+$ with zero Dirichlet boundary condition, where $p>1$ and $f$ is\\na locally Lipschitz continuous function. Among other things, we show that if\\n$f(\\\\sup_{\\\\mathbb{R}^N_+} u)=0$ and $f$ satisfies some other mild conditions,\\nthen $u$ depends only on $x_N$ and monotone increasing in the $x_N$-direction.\\nOur result partially extends a classical result of Berestycki, Caffarelli and\\nNirenberg in 1993 to the $p$-Laplacian.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Symmetry of bounded solutions to quasilinear elliptic equations in a half-space
Let $u$ be a bounded positive solution to the problem $-\Delta_p u = f(u)$ in
$\mathbb{R}^N_+$ with zero Dirichlet boundary condition, where $p>1$ and $f$ is
a locally Lipschitz continuous function. Among other things, we show that if
$f(\sup_{\mathbb{R}^N_+} u)=0$ and $f$ satisfies some other mild conditions,
then $u$ depends only on $x_N$ and monotone increasing in the $x_N$-direction.
Our result partially extends a classical result of Berestycki, Caffarelli and
Nirenberg in 1993 to the $p$-Laplacian.