半空间准线性椭圆方程有界解的对称性

Phuong Le
{"title":"半空间准线性椭圆方程有界解的对称性","authors":"Phuong Le","doi":"arxiv-2409.04804","DOIUrl":null,"url":null,"abstract":"Let $u$ be a bounded positive solution to the problem $-\\Delta_p u = f(u)$ in\n$\\mathbb{R}^N_+$ with zero Dirichlet boundary condition, where $p>1$ and $f$ is\na locally Lipschitz continuous function. Among other things, we show that if\n$f(\\sup_{\\mathbb{R}^N_+} u)=0$ and $f$ satisfies some other mild conditions,\nthen $u$ depends only on $x_N$ and monotone increasing in the $x_N$-direction.\nOur result partially extends a classical result of Berestycki, Caffarelli and\nNirenberg in 1993 to the $p$-Laplacian.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry of bounded solutions to quasilinear elliptic equations in a half-space\",\"authors\":\"Phuong Le\",\"doi\":\"arxiv-2409.04804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $u$ be a bounded positive solution to the problem $-\\\\Delta_p u = f(u)$ in\\n$\\\\mathbb{R}^N_+$ with zero Dirichlet boundary condition, where $p>1$ and $f$ is\\na locally Lipschitz continuous function. Among other things, we show that if\\n$f(\\\\sup_{\\\\mathbb{R}^N_+} u)=0$ and $f$ satisfies some other mild conditions,\\nthen $u$ depends only on $x_N$ and monotone increasing in the $x_N$-direction.\\nOur result partially extends a classical result of Berestycki, Caffarelli and\\nNirenberg in 1993 to the $p$-Laplacian.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设 $u$ 是问题 $-\Delta_p u = f(u)$ 在$\mathbb{R}^N_+$中的有界正解,具有零迪里夏特边界条件,其中 $p>1$ 和 $f$ 是局部利普齐兹连续函数。其中,我们证明了如果$f(\sup_\mathbb{R}^N_+} u)=0$ 并且$f$满足其他一些温和条件,那么$u$只依赖于$x_N$并且在$x_N$方向上单调递增。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry of bounded solutions to quasilinear elliptic equations in a half-space
Let $u$ be a bounded positive solution to the problem $-\Delta_p u = f(u)$ in $\mathbb{R}^N_+$ with zero Dirichlet boundary condition, where $p>1$ and $f$ is a locally Lipschitz continuous function. Among other things, we show that if $f(\sup_{\mathbb{R}^N_+} u)=0$ and $f$ satisfies some other mild conditions, then $u$ depends only on $x_N$ and monotone increasing in the $x_N$-direction. Our result partially extends a classical result of Berestycki, Caffarelli and Nirenberg in 1993 to the $p$-Laplacian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信