具有部分扩散的守恒律系统的局部存在性

Jean-Paul Adogbo, Raphäel Danchin
{"title":"具有部分扩散的守恒律系统的局部存在性","authors":"Jean-Paul Adogbo, Raphäel Danchin","doi":"arxiv-2409.04791","DOIUrl":null,"url":null,"abstract":"This paper is dedicated to the study of the local existence theory of the\nCauchy problem for symmetric hyperbolic partially diffusive systems (also known\nas hyperbolic-parabolic system) in dimension $d\\ge 1$. The system under\nconsideration is a coupling between a symmetric hyperbolic system and a\nparabolic system. We address the question of well-posedness for large data\nhaving critical Besov regularity. This improves the analysis of Serre\n\\cite{Serr10} and Kawashima \\cite{Kawashima83}. Our results allow for initial\ndata whose components have different regularities and we enlarge the class of\nthe components experiencing the diffusion to $H^s$, with $s>d/2$ (instead of\n$s>d/2+1$ in Serre's work and $s>d/2+2$ in Kawashima's one). Our results rely\non G\\r{a}rding's inequality, composition estimates and product laws. As an\nexample, we consider the Navier-Stokes-Fourier equations.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"408 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local existence for systems of conservation laws with partial diffusion\",\"authors\":\"Jean-Paul Adogbo, Raphäel Danchin\",\"doi\":\"arxiv-2409.04791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is dedicated to the study of the local existence theory of the\\nCauchy problem for symmetric hyperbolic partially diffusive systems (also known\\nas hyperbolic-parabolic system) in dimension $d\\\\ge 1$. The system under\\nconsideration is a coupling between a symmetric hyperbolic system and a\\nparabolic system. We address the question of well-posedness for large data\\nhaving critical Besov regularity. This improves the analysis of Serre\\n\\\\cite{Serr10} and Kawashima \\\\cite{Kawashima83}. Our results allow for initial\\ndata whose components have different regularities and we enlarge the class of\\nthe components experiencing the diffusion to $H^s$, with $s>d/2$ (instead of\\n$s>d/2+1$ in Serre's work and $s>d/2+2$ in Kawashima's one). Our results rely\\non G\\\\r{a}rding's inequality, composition estimates and product laws. As an\\nexample, we consider the Navier-Stokes-Fourier equations.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"408 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于研究维数为 $d\ge 1$ 的对称双曲部分扩散系统(又称双曲-抛物系统)的考奇问题的局部存在性理论。所考虑的系统是对称双曲系统与抛物系统之间的耦合。我们解决了具有临界贝索夫正则性的大数据的良好拟合问题。这改进了 Serre cite{Serr10} 和 Kawashima cite{Kawashima83} 的分析。我们的结果允许初始数据的成分具有不同的正则性,而且我们将经历扩散的成分类别扩大到了$H^s$,其中$s>d/2$(而不是Serre工作中的$s>d/2+1$和Kawashima工作中的$s>d/2+2$)。我们的结果依赖于 G\r{a}rding 不等式、组成估计和积定律。作为一个例子,我们考虑 Navier-Stokes-Fourier 方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local existence for systems of conservation laws with partial diffusion
This paper is dedicated to the study of the local existence theory of the Cauchy problem for symmetric hyperbolic partially diffusive systems (also known as hyperbolic-parabolic system) in dimension $d\ge 1$. The system under consideration is a coupling between a symmetric hyperbolic system and a parabolic system. We address the question of well-posedness for large data having critical Besov regularity. This improves the analysis of Serre \cite{Serr10} and Kawashima \cite{Kawashima83}. Our results allow for initial data whose components have different regularities and we enlarge the class of the components experiencing the diffusion to $H^s$, with $s>d/2$ (instead of $s>d/2+1$ in Serre's work and $s>d/2+2$ in Kawashima's one). Our results rely on G\r{a}rding's inequality, composition estimates and product laws. As an example, we consider the Navier-Stokes-Fourier equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信