通过重复迭代的增长率对函数进行分类

Titus Hilberdink
{"title":"通过重复迭代的增长率对函数进行分类","authors":"Titus Hilberdink","doi":"arxiv-2409.06661","DOIUrl":null,"url":null,"abstract":"In this paper we develop a classification of real functions based on growth\nrates of repeated iteration. We show how functions are naturally\ndistinguishable when considering inverses of repeated iterations. For example,\n$n+2\\to 2n\\to 2^n\\to 2^{\\cdot^{\\cdot^2}}$ ($n$-times) etc. and their inverse\nfunctions $x-2, x/2, \\log x/\\log 2,$ etc. Based on this idea and some\nregularity conditions we define classes of functions, with $x+2$, $2x$, $2^x$\nin the first three classes. We prove various properties of these classes which\nreveal their nature, including a `uniqueness' property. We exhibit examples of\nfunctions lying between consecutive classes and indicate how this implies these\ngaps are very `large'. Indeed, we suspect the existence of a continuum of such\nclasses.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifying Functions via growth rates of repeated iterations\",\"authors\":\"Titus Hilberdink\",\"doi\":\"arxiv-2409.06661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we develop a classification of real functions based on growth\\nrates of repeated iteration. We show how functions are naturally\\ndistinguishable when considering inverses of repeated iterations. For example,\\n$n+2\\\\to 2n\\\\to 2^n\\\\to 2^{\\\\cdot^{\\\\cdot^2}}$ ($n$-times) etc. and their inverse\\nfunctions $x-2, x/2, \\\\log x/\\\\log 2,$ etc. Based on this idea and some\\nregularity conditions we define classes of functions, with $x+2$, $2x$, $2^x$\\nin the first three classes. We prove various properties of these classes which\\nreveal their nature, including a `uniqueness' property. We exhibit examples of\\nfunctions lying between consecutive classes and indicate how this implies these\\ngaps are very `large'. Indeed, we suspect the existence of a continuum of such\\nclasses.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们根据重复迭代的增长率对实函数进行了分类。我们展示了在考虑重复迭代的倒数时,函数是如何自然区分的。例如,$n+2\to 2n\to 2^n\to 2^{\cdot^{cdot^2}}$ ($n$-times)等及其反函数$x-2, x/2, \log x/\log 2, $等。基于这一思想和一些规律性条件,我们定义了函数类,其中前三类分别为 $x+2$、$2x$、$2^x$。我们证明了这些类的各种性质,包括 "唯一性 "性质,从而揭示了它们的性质。我们举例说明了位于连续类之间的函数,并指出这意味着这些间隙非常 "大"。事实上,我们怀疑存在着这样一个连续的类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying Functions via growth rates of repeated iterations
In this paper we develop a classification of real functions based on growth rates of repeated iteration. We show how functions are naturally distinguishable when considering inverses of repeated iterations. For example, $n+2\to 2n\to 2^n\to 2^{\cdot^{\cdot^2}}$ ($n$-times) etc. and their inverse functions $x-2, x/2, \log x/\log 2,$ etc. Based on this idea and some regularity conditions we define classes of functions, with $x+2$, $2x$, $2^x$ in the first three classes. We prove various properties of these classes which reveal their nature, including a `uniqueness' property. We exhibit examples of functions lying between consecutive classes and indicate how this implies these gaps are very `large'. Indeed, we suspect the existence of a continuum of such classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信