植被光谱作为解释潜在土壤特性的综合指标:最新进展综述

IF 3.3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Willibroad Buma, Andrei Abelev, Trina Merrick
{"title":"植被光谱作为解释潜在土壤特性的综合指标:最新进展综述","authors":"Willibroad Buma, Andrei Abelev, Trina Merrick","doi":"10.3389/fenvs.2024.1430818","DOIUrl":null,"url":null,"abstract":"Grassland ecosystems play a critical role in global carbon cycling and environmental health. Understanding the intricate link between grassland vegetation traits and underlying soil properties is crucial for effective ecosystem monitoring and management. This review paper examines advancements in utilizing Radiative Transfer Models (RTMs) and hyperspectral remote sensing to bridge this knowledge gap. We explore the potential of vegetation spectra as an integrated measure of soil characteristics, acknowledging the value of other remote sensing sources. Our focus is on studies leveraging hyperspectral data from proximal and airborne sensors, while discussing the impact of spatial scale on trait retrieval accuracy. Finally, we explore how advancements in global satellite remote sensing contribute to vegetation trait detection. This review concludes by identifying current challenges, outlining future research directions, and highlighting opportunities for improved understanding of the vegetation-soil property interaction.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vegetation spectra as an integrated measure to explain underlying soil characteristics: a review of recent advances\",\"authors\":\"Willibroad Buma, Andrei Abelev, Trina Merrick\",\"doi\":\"10.3389/fenvs.2024.1430818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grassland ecosystems play a critical role in global carbon cycling and environmental health. Understanding the intricate link between grassland vegetation traits and underlying soil properties is crucial for effective ecosystem monitoring and management. This review paper examines advancements in utilizing Radiative Transfer Models (RTMs) and hyperspectral remote sensing to bridge this knowledge gap. We explore the potential of vegetation spectra as an integrated measure of soil characteristics, acknowledging the value of other remote sensing sources. Our focus is on studies leveraging hyperspectral data from proximal and airborne sensors, while discussing the impact of spatial scale on trait retrieval accuracy. Finally, we explore how advancements in global satellite remote sensing contribute to vegetation trait detection. This review concludes by identifying current challenges, outlining future research directions, and highlighting opportunities for improved understanding of the vegetation-soil property interaction.\",\"PeriodicalId\":12460,\"journal\":{\"name\":\"Frontiers in Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Environmental Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3389/fenvs.2024.1430818\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1430818","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

草原生态系统在全球碳循环和环境健康方面发挥着至关重要的作用。了解草原植被特征与底层土壤特性之间错综复杂的联系对于有效监测和管理生态系统至关重要。这篇综述论文探讨了利用辐射传递模型(RTM)和高光谱遥感技术弥补这一知识空白的进展。我们探讨了植被光谱作为土壤特性综合测量方法的潜力,同时也承认其他遥感来源的价值。我们的重点是利用近距离和机载传感器的高光谱数据进行研究,同时讨论空间尺度对特征检索精度的影响。最后,我们探讨了全球卫星遥感技术的进步如何促进植被性状检测。本综述最后指出了当前面临的挑战,概述了未来的研究方向,并强调了加深了解植被-土壤特性相互作用的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vegetation spectra as an integrated measure to explain underlying soil characteristics: a review of recent advances
Grassland ecosystems play a critical role in global carbon cycling and environmental health. Understanding the intricate link between grassland vegetation traits and underlying soil properties is crucial for effective ecosystem monitoring and management. This review paper examines advancements in utilizing Radiative Transfer Models (RTMs) and hyperspectral remote sensing to bridge this knowledge gap. We explore the potential of vegetation spectra as an integrated measure of soil characteristics, acknowledging the value of other remote sensing sources. Our focus is on studies leveraging hyperspectral data from proximal and airborne sensors, while discussing the impact of spatial scale on trait retrieval accuracy. Finally, we explore how advancements in global satellite remote sensing contribute to vegetation trait detection. This review concludes by identifying current challenges, outlining future research directions, and highlighting opportunities for improved understanding of the vegetation-soil property interaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Environmental Science
Frontiers in Environmental Science Environmental Science-General Environmental Science
CiteScore
4.50
自引率
8.70%
发文量
2276
审稿时长
12 weeks
期刊介绍: Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions. Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信