南美洲西北部对流许可模拟中降雨对微物理和行星边界层参数的敏感性

IF 2.8 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
K. Santiago Hernández, Sebastián Gómez-Ríos, Juan J. Henao, Vanessa Robledo, Álvaro Ramírez-Cardona, Angela M. Rendón
{"title":"南美洲西北部对流许可模拟中降雨对微物理和行星边界层参数的敏感性","authors":"K. Santiago Hernández, Sebastián Gómez-Ríos, Juan J. Henao, Vanessa Robledo, Álvaro Ramírez-Cardona, Angela M. Rendón","doi":"10.1007/s13351-024-3156-4","DOIUrl":null,"url":null,"abstract":"<p>Convection-permitting modeling allows us to understand mechanisms that influence rainfall in specific regions. However, microphysics parameterization (MP) and planetary boundary layer (PBL) schemes remain an important source of uncertainty, affecting rainfall intensity, occurrence, duration, and propagation. Here, we study the sensitivity of rainfall to three MP [Weather Research and Forecasting (WRF) Single-Moment 6-class (WSM6), Thompson, and Morrison] and two PBL [the Yonsei University (YSU) and Mellor–Yamada Nakanishi Niino (MYNN)] schemes with a convection-permitting resolution (4 km) over northwestern South America (NWSA). Simulations were performed by using the WRF model and the results were evaluated against soundings, rain gauges, and satellite data, considering the spatio-temporal variability of rainfall over diverse regions prone to deep convection in NWSA. MP and PBL schemes largely influenced simulated rainfall, with better results for the less computationally expensive WSM6 MP and YSU PBL schemes. Regarding rain gauges and satellite estimates, simulations with Morrison MP overestimated rainfall, especially westward of the Andes, whereas the MYNN PBL underestimated precipitation in the Amazon–Savannas flatlands. We found that the uncertainty in the rainfall representation is highly dependent on the region, with a higher influence of MP in the Colombian Pacific and PBL in the Amazon–Savannas flatlands. When analyzing rainfall-related processes, the selection of both MP and PBL parameterizations exerted a large influence on the simulated lower tropospheric moisture flux and moisture convergence. PBL schemes significantly influenced the downward shortwave radiation, with MYNN simulating a greater amount of low clouds, which decreased the radiation income. Furthermore, latent heat fluxes were greater for YSU, favoring moist convection and rainfall. MP schemes had a marked impact on vertical velocity. Specifically, Morrison MP showed stronger convection and higher precipitation rates, which is associated with a greater latent heat release due to solid-phase hydrometeor formation. This study provides insights into assessing physical parameterizations in numerical models and suggests key processes for rainfall representation in NWSA.</p>","PeriodicalId":48796,"journal":{"name":"Journal of Meteorological Research","volume":"2 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainfall Sensitivity to Microphysics and Planetary Boundary Layer Parameterizations in Convection-Permitting Simulations over Northwestern South America\",\"authors\":\"K. Santiago Hernández, Sebastián Gómez-Ríos, Juan J. Henao, Vanessa Robledo, Álvaro Ramírez-Cardona, Angela M. Rendón\",\"doi\":\"10.1007/s13351-024-3156-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Convection-permitting modeling allows us to understand mechanisms that influence rainfall in specific regions. However, microphysics parameterization (MP) and planetary boundary layer (PBL) schemes remain an important source of uncertainty, affecting rainfall intensity, occurrence, duration, and propagation. Here, we study the sensitivity of rainfall to three MP [Weather Research and Forecasting (WRF) Single-Moment 6-class (WSM6), Thompson, and Morrison] and two PBL [the Yonsei University (YSU) and Mellor–Yamada Nakanishi Niino (MYNN)] schemes with a convection-permitting resolution (4 km) over northwestern South America (NWSA). Simulations were performed by using the WRF model and the results were evaluated against soundings, rain gauges, and satellite data, considering the spatio-temporal variability of rainfall over diverse regions prone to deep convection in NWSA. MP and PBL schemes largely influenced simulated rainfall, with better results for the less computationally expensive WSM6 MP and YSU PBL schemes. Regarding rain gauges and satellite estimates, simulations with Morrison MP overestimated rainfall, especially westward of the Andes, whereas the MYNN PBL underestimated precipitation in the Amazon–Savannas flatlands. We found that the uncertainty in the rainfall representation is highly dependent on the region, with a higher influence of MP in the Colombian Pacific and PBL in the Amazon–Savannas flatlands. When analyzing rainfall-related processes, the selection of both MP and PBL parameterizations exerted a large influence on the simulated lower tropospheric moisture flux and moisture convergence. PBL schemes significantly influenced the downward shortwave radiation, with MYNN simulating a greater amount of low clouds, which decreased the radiation income. Furthermore, latent heat fluxes were greater for YSU, favoring moist convection and rainfall. MP schemes had a marked impact on vertical velocity. Specifically, Morrison MP showed stronger convection and higher precipitation rates, which is associated with a greater latent heat release due to solid-phase hydrometeor formation. This study provides insights into assessing physical parameterizations in numerical models and suggests key processes for rainfall representation in NWSA.</p>\",\"PeriodicalId\":48796,\"journal\":{\"name\":\"Journal of Meteorological Research\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Meteorological Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s13351-024-3156-4\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Meteorological Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13351-024-3156-4","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对流允许建模使我们能够了解影响特定地区降雨的机制。然而,微物理参数化(MP)和行星边界层(PBL)方案仍然是不确定性的重要来源,会影响降雨强度、发生、持续时间和传播。在此,我们研究了降雨对南美洲西北部(NWSA)对流允许分辨率(4 千米)的三种 MP(天气研究与预报(WRF)单时刻 6 级(WSM6)、汤普森(Thompson)和莫里森(Morrison))和两种 PBL(延世大学(YSU)和 Mellor-Yamada Nakanishi Niino(MYNN))方案的敏感性。使用 WRF 模型进行了模拟,并根据探空资料、雨量计和卫星数据对模拟结果进行了评估,同时考虑到了南美洲西北部易发生深层对流的不同地区降雨的时空变异性。MP 和 PBL 方案在很大程度上影响了模拟降雨量,计算成本较低的 WSM6 MP 和 YSU PBL 方案的结果更好。在雨量计和卫星估算方面,莫里森 MP 模拟高估了降雨量,尤其是安第斯山脉以西地区,而 MYNN PBL 则低估了亚马孙-萨瓦纳斯平原地区的降雨量。我们发现,降雨量表示的不确定性与地区有很大关系,哥伦比亚太平洋地区受 MP 的影响较大,而亚马逊-萨瓦纳斯平地受 PBL 的影响较大。在分析与降雨相关的过程时,MP 和 PBL 参数的选择对模拟的对流层低层水汽通量和水汽辐合有很大影响。短波层方案对向下的短波辐射有很大影响,MYNN 模拟了更多的低云,从而减少了辐射收入。此外,YSU 的潜热通量更大,有利于湿对流和降雨。MP 方案对垂直速度有显著影响。具体而言,莫里森 MP 显示出更强的对流和更高的降水率,这与固相水气形成所释放的更大潜热有关。这项研究为评估数值模式中的物理参数化提供了见解,并提出了西北地区降水表示的关键过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rainfall Sensitivity to Microphysics and Planetary Boundary Layer Parameterizations in Convection-Permitting Simulations over Northwestern South America

Convection-permitting modeling allows us to understand mechanisms that influence rainfall in specific regions. However, microphysics parameterization (MP) and planetary boundary layer (PBL) schemes remain an important source of uncertainty, affecting rainfall intensity, occurrence, duration, and propagation. Here, we study the sensitivity of rainfall to three MP [Weather Research and Forecasting (WRF) Single-Moment 6-class (WSM6), Thompson, and Morrison] and two PBL [the Yonsei University (YSU) and Mellor–Yamada Nakanishi Niino (MYNN)] schemes with a convection-permitting resolution (4 km) over northwestern South America (NWSA). Simulations were performed by using the WRF model and the results were evaluated against soundings, rain gauges, and satellite data, considering the spatio-temporal variability of rainfall over diverse regions prone to deep convection in NWSA. MP and PBL schemes largely influenced simulated rainfall, with better results for the less computationally expensive WSM6 MP and YSU PBL schemes. Regarding rain gauges and satellite estimates, simulations with Morrison MP overestimated rainfall, especially westward of the Andes, whereas the MYNN PBL underestimated precipitation in the Amazon–Savannas flatlands. We found that the uncertainty in the rainfall representation is highly dependent on the region, with a higher influence of MP in the Colombian Pacific and PBL in the Amazon–Savannas flatlands. When analyzing rainfall-related processes, the selection of both MP and PBL parameterizations exerted a large influence on the simulated lower tropospheric moisture flux and moisture convergence. PBL schemes significantly influenced the downward shortwave radiation, with MYNN simulating a greater amount of low clouds, which decreased the radiation income. Furthermore, latent heat fluxes were greater for YSU, favoring moist convection and rainfall. MP schemes had a marked impact on vertical velocity. Specifically, Morrison MP showed stronger convection and higher precipitation rates, which is associated with a greater latent heat release due to solid-phase hydrometeor formation. This study provides insights into assessing physical parameterizations in numerical models and suggests key processes for rainfall representation in NWSA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Meteorological Research
Journal of Meteorological Research METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
6.20
自引率
6.20%
发文量
54
期刊介绍: Journal of Meteorological Research (previously known as Acta Meteorologica Sinica) publishes the latest achievements and developments in the field of atmospheric sciences. Coverage is broad, including topics such as pure and applied meteorology; climatology and climate change; marine meteorology; atmospheric physics and chemistry; cloud physics and weather modification; numerical weather prediction; data assimilation; atmospheric sounding and remote sensing; atmospheric environment and air pollution; radar and satellite meteorology; agricultural and forest meteorology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信