{"title":"ϖ-分式偏微分方程的 Ulam-Hyers-Rassias Mittag-Leffler 稳定性","authors":"Mohamed Rhaima, Djalal Boucenna, Lassaad Mchiri, Mondher Benjemaa, Abdellatif Ben Makhlouf","doi":"10.1186/s13660-024-03170-w","DOIUrl":null,"url":null,"abstract":"This paper offers a comprehensive analysis of solution representations for ϖ-fractional partial differential equations, specifically focusing on the linear case of the Darboux problem. We exhibit a representation of the solutions for the Darboux problem of ϖ-fractional partial differential equations in the linear case in the space of continuous functions. Through the application of the generalized Gronwall inequality, we establish the Ulam–Hyers–Rassias Mittag–Leffler stability in the space of continuous functions. Three numerical examples are presented to show the effectiveness and the applicability of our results.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"8 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ulam–Hyers–Rassias Mittag-Leffler stability of ϖ–fractional partial differential equations\",\"authors\":\"Mohamed Rhaima, Djalal Boucenna, Lassaad Mchiri, Mondher Benjemaa, Abdellatif Ben Makhlouf\",\"doi\":\"10.1186/s13660-024-03170-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper offers a comprehensive analysis of solution representations for ϖ-fractional partial differential equations, specifically focusing on the linear case of the Darboux problem. We exhibit a representation of the solutions for the Darboux problem of ϖ-fractional partial differential equations in the linear case in the space of continuous functions. Through the application of the generalized Gronwall inequality, we establish the Ulam–Hyers–Rassias Mittag–Leffler stability in the space of continuous functions. Three numerical examples are presented to show the effectiveness and the applicability of our results.\",\"PeriodicalId\":16088,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03170-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03170-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Ulam–Hyers–Rassias Mittag-Leffler stability of ϖ–fractional partial differential equations
This paper offers a comprehensive analysis of solution representations for ϖ-fractional partial differential equations, specifically focusing on the linear case of the Darboux problem. We exhibit a representation of the solutions for the Darboux problem of ϖ-fractional partial differential equations in the linear case in the space of continuous functions. Through the application of the generalized Gronwall inequality, we establish the Ulam–Hyers–Rassias Mittag–Leffler stability in the space of continuous functions. Three numerical examples are presented to show the effectiveness and the applicability of our results.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.