论多项式极导数的伯恩斯坦和图兰型积分平均估计值

IF 1.5 3区 数学 Q1 MATHEMATICS
Khangembam Babina Devi, Barchand Chanam
{"title":"论多项式极导数的伯恩斯坦和图兰型积分平均估计值","authors":"Khangembam Babina Devi, Barchand Chanam","doi":"10.1186/s13660-024-03183-5","DOIUrl":null,"url":null,"abstract":"Let $p(z)$ be a polynomial of degree n having no zero in $|z|< k$ , $k\\leq 1$ , then Govil [Proc. Nat. Acad. Sci., 50(1980), 50-52] proved $$ \\max _{|z|=1}|p'(z)|\\leq \\frac{n}{1+k^{n}}\\max _{|z|=1}|p(z)|, $$ provided $|p'(z)|$ and $|q'(z)|$ attain their maxima at the same point on the circle $|z|=1$ , where $$ q(z)=z^{n}\\overline{p\\bigg(\\frac{1}{\\overline{z}}\\bigg)}. $$ In this paper, we present integral mean inequalities of Turán- and Erdös-Lax-type for the polar derivative of a polynomial by involving some coefficients of the polynomial, which refine some previously proved results and one of our results improves the above Govil inequality as a special case. These results incorporate the placement of the zeros and some coefficients of the underlying polynomial. Furthermore, we provide numerical examples and graphical representations to demonstrate the superior precision of our results compared to some previously established results.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"74 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Bernstein and Turán-type integral mean estimates for polar derivative of a polynomial\",\"authors\":\"Khangembam Babina Devi, Barchand Chanam\",\"doi\":\"10.1186/s13660-024-03183-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p(z)$ be a polynomial of degree n having no zero in $|z|< k$ , $k\\\\leq 1$ , then Govil [Proc. Nat. Acad. Sci., 50(1980), 50-52] proved $$ \\\\max _{|z|=1}|p'(z)|\\\\leq \\\\frac{n}{1+k^{n}}\\\\max _{|z|=1}|p(z)|, $$ provided $|p'(z)|$ and $|q'(z)|$ attain their maxima at the same point on the circle $|z|=1$ , where $$ q(z)=z^{n}\\\\overline{p\\\\bigg(\\\\frac{1}{\\\\overline{z}}\\\\bigg)}. $$ In this paper, we present integral mean inequalities of Turán- and Erdös-Lax-type for the polar derivative of a polynomial by involving some coefficients of the polynomial, which refine some previously proved results and one of our results improves the above Govil inequality as a special case. These results incorporate the placement of the zeros and some coefficients of the underlying polynomial. Furthermore, we provide numerical examples and graphical representations to demonstrate the superior precision of our results compared to some previously established results.\",\"PeriodicalId\":16088,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03183-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03183-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $p(z)$ 是一个在 $|z|< k$ 中没有零点的 n 阶多项式 , $k\leq 1$ , 然后 Govil [Proc、50(1980), 50-52] 证明了 $$ \max _{|z||=1}|p'(z)|\leq \frac{n}{1+k^{n}}\max _{|z||=1}|p(z)|、$$ 条件是 $|p'(z)|$ 和 $|q'(z)|$ 在圆 $|z|=1$ 上的同一点达到最大值,其中 $$ q(z)=z^{n}\overline{p\bigg(\frac{1}{overline{z}}\bigg)}.$$ 在本文中,我们通过涉及多项式的一些系数,提出了多项式极导数的 Turán 型和 Erdös-Lax 型积分均值不等式,这些不等式完善了之前证明的一些结果,我们的一个结果改进了作为特例的上述戈维尔不等式。这些结果包含了零点的位置和底层多项式的一些系数。此外,我们还提供了数值示例和图形表示,以证明我们的结果与之前的一些既定结果相比具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Bernstein and Turán-type integral mean estimates for polar derivative of a polynomial
Let $p(z)$ be a polynomial of degree n having no zero in $|z|< k$ , $k\leq 1$ , then Govil [Proc. Nat. Acad. Sci., 50(1980), 50-52] proved $$ \max _{|z|=1}|p'(z)|\leq \frac{n}{1+k^{n}}\max _{|z|=1}|p(z)|, $$ provided $|p'(z)|$ and $|q'(z)|$ attain their maxima at the same point on the circle $|z|=1$ , where $$ q(z)=z^{n}\overline{p\bigg(\frac{1}{\overline{z}}\bigg)}. $$ In this paper, we present integral mean inequalities of Turán- and Erdös-Lax-type for the polar derivative of a polynomial by involving some coefficients of the polynomial, which refine some previously proved results and one of our results improves the above Govil inequality as a special case. These results incorporate the placement of the zeros and some coefficients of the underlying polynomial. Furthermore, we provide numerical examples and graphical representations to demonstrate the superior precision of our results compared to some previously established results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信